Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right)\left(1+\frac{1}{3.5}\right).....+\left(1+\frac{1}{99.101}\right)\)
\(=\frac{1.3+1}{1.3}.\frac{2.4+1}{2.4}.\frac{3.5+1}{3.5}.....\frac{99.101+1}{99.101}\)
\(=\frac{2^2}{1.3}.\frac{3^2}{2.4}.\frac{4^2}{3.5}.....\frac{100^2}{99.101}\)
\(=\frac{2.3.4.....100}{1.2.3.....99}.\frac{2.3.4.....100}{3.4.5.....101}\)
\(=100.\frac{2}{101}=\frac{200}{101}\)
\(\text{Đ}\text{ặt}:A=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+..+\frac{1}{99.101}\)
\(2A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{99.101}\)
\(2A=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{99}-\frac{1}{101}\)
\(2A=1-\frac{1}{101}\)
\(A=\frac{100}{101}:2=\frac{50}{101}\)
\(\Rightarrow\frac{1}{3}x.x=\frac{50}{101}\)
\(x.\left(\frac{1}{3}.1\right)=\frac{50}{101}\)
\(x.\frac{1}{3}=\frac{50}{101}\)
$x=\frac{50}{101}:\frac{1}{3}=\frac{150}{101}$
\(.\frac{1}{3}x.x=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{101}\right)\)
\(\frac{1}{3}xx=\frac{1}{2}.\left(1-\frac{1}{101}\right)\)
\(\frac{1}{3}xx=\frac{1}{2}.\left(\frac{100}{101}\right)\)
\(\frac{1}{3}xx=\frac{50}{101}\)
\(x.x=\frac{150}{101}\)
còn lại tự tính
Bài 1:
\(\frac{4}{3.5}+\frac{4}{5.7}+...+\frac{4}{97.99}\)
\(=2\left(\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{97.99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{97}-\frac{1}{99}\right)\)
\(=2\left(\frac{1}{3}-\frac{1}{99}\right)\)
\(=2.\frac{32}{99}=\frac{64}{99}\)
Bài 2:
a) \(2.4^x-18=110\)
\(\Leftrightarrow2.4^x=128\)
\(\Leftrightarrow4^x=64\)
\(\Leftrightarrow4^x=4^3\Leftrightarrow x=3\)
Vậy x = 3
b) \(\left(\frac{3}{2}x-1\right)^5=1\)
\(\Leftrightarrow\frac{3}{2}x-1=1\)
\(\Leftrightarrow\frac{3}{2}x=2\)
\(\Leftrightarrow x=\frac{4}{3}\)
Vậy \(x=\frac{4}{3}\)
a) 4/3.5 + 3/5.7 + .... + 4/97.99
= 4( 1/3.5 +1/5.7 + ... + 1/97.99 )
= 4 . 1/2 . 2 ( 1/3.5 +1/5.7 + ... + 1/97.99 )
= 4/2 ( 2/3.5 + 2/5.7 + .... + 2/97.99 )
= 2 ( 5-3/3.5 + 7-5/5.7 + ..... + 99-97/97.99 )
= 2 (5/3.5 - 3/3.5 + 7/5.7 - 5/5.7 + .... + 99/97.99 - 97/97.99 )
= 2 ( 1/3 - 1/5 + 1/5 - 1/7 + ..... + 1/97 - 1/99 )
= 2 ( 1/3 -1/99 )
= 2 (33/99 - 1/99 )
= 2 . 32/99
= 32.2/99
=64/99
\(\left(1+\frac{1}{1.3}\right)\left(1+\frac{1}{2.4}\right).....\left(1+\frac{1}{99.101}\right)\)
\(=\frac{2.2}{1.3}\frac{3.3}{2.4}.....\frac{100.100}{99.101}\)
\(=\frac{\left(2.3.4.....100\right).\left(2.3.4.....100\right)}{\left(1.2.3.....99\right).\left(3.4.5.....101\right)}\)
\(=\frac{100.2}{101}=\frac{200}{101}\)
\(\frac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right)^2}< 0\)
\(\Rightarrow\frac{\left(x-3\right)\left(x+5\right)}{\left(x-2\right).\left(x-2\right)}< 0\)
=> ( x - 3 ) . ( x - 5 ) và ( x - 2 ) . ( x - 2 ) trái dấu
Mà ( x - 2 )2 = ( x - 2 ) . ( x - 2 ) ≥ 0 ∀ x
\(\Rightarrow\hept{\begin{cases}\left(x−3\right).\left(x+5\right)< 0\\\left(x−2\right).\left(x−2\right)>0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< −5;−5< x< 3\\x>2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x< −5\\2< x< 3\end{cases}}\)