Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số hsg , hs khá lần lượt là : x,y ( x , y € N* )
ta có pt :
x-1= (x+y-1)/6
y-1=4(x+y-1)/5
giải pt ta đc :
X=6
Y=25
Vậy số học sinh cả lớp là : 31 học sinh
🙂🙂🙂
Gọi a(bạn) và b(bạn) lần lượt là số học sinh giỏi và số học sinh khá của lớp(Điều kiện: a∈N*; b∈N*)
Vì lớp học chỉ có các bạn học sinh xếp loại học lực giỏi và khá nên số học sinh của lớp là: a+b(bạn)
Vì khi một bạn học sinh giỏi chuyển đi thì 1/6 số học sinh còn lại của lớp là học sinh giỏi nên ta có phương trình:
\(a-1=\dfrac{1}{6}\cdot\left(a+b-1\right)\)
\(\Leftrightarrow a-1=\dfrac{1}{6}a+\dfrac{1}{6}b-\dfrac{1}{6}\)
\(\Leftrightarrow a-1-\dfrac{1}{6}a-\dfrac{1}{6}b+\dfrac{1}{6}=0\)
\(\Leftrightarrow\dfrac{5}{6}a-\dfrac{1}{6}b=\dfrac{5}{6}\)
\(\Leftrightarrow6\left(\dfrac{5}{6}a-\dfrac{1}{6}b\right)=6\cdot\dfrac{5}{6}\)
\(\Leftrightarrow5a-b=5\)(1)
Vì khi chuyển 1 bạn học sinh khá đi thì 4/5 số học sinh còn lại của lớp là học sinh khá nên ta có phương trình:
\(\left(b-1\right)=\dfrac{4}{5}\cdot\left(a+b-1\right)\)
\(\Leftrightarrow b-1=\dfrac{4}{5}a+\dfrac{4}{5}b-\dfrac{4}{5}\)
\(\Leftrightarrow b-1-\dfrac{4}{5}a-\dfrac{4}{5}b+\dfrac{4}{5}=0\)
\(\Leftrightarrow-\dfrac{4}{5}a+\dfrac{1}{5}b=\dfrac{1}{5}\)
\(\Leftrightarrow5\left(-\dfrac{4}{5}a+\dfrac{1}{5}b\right)=\dfrac{1}{5}\cdot5\)
\(\Leftrightarrow-4a+b=1\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}5a-b=5\\-4a+b=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\\5a=5+b\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=6\\b+5=30\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=6\left(nhận\right)\\b=25\left(nhận\right)\end{matrix}\right.\)
Vậy: Số học sinh của lớp là: 6+25=31(bạn)
Lời giải:
Gọi số học sinh giỏi của lớp là $a$, số học sinh khá là $b$
Số HS của lớp là $a+b$
Theo bài ra ta có : \(\left\{\begin{matrix} \frac{a+b-1}{6}=a-1\\ \frac{a+b-1}{5}=a\end{matrix}\right.\)
\(\Rightarrow \frac{a+b-1}{5}-\frac{a+b-1}{6}=a-(a-1)=1\)
\(\Leftrightarrow (a+b-1)\left(\frac{1}{5}-\frac{1}{6}\right)=1\)
\(\Leftrightarrow a+b-1=30\Rightarrow a+b=31\)
Vậy số học sinh của lớp là $31$ HS
Gọi số học sinh khá là a, số học sinh giỏi ở học kỳ 1 là b \(\left(a,b\in N,0< a;b< 500\right)\)
Theo bài ta, ta có: \(\hept{\begin{cases}a+b=500\\a+2\%a+b+4\%b=513\end{cases}\Rightarrow}\hept{\begin{cases}a+b=500\\\frac{51}{50}a+\frac{26}{25}b=513\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a+b=500\\\left(a+b\right)+\left(\frac{1}{50}a+\frac{1}{25}b\right)=513\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{50}a+\frac{1}{50}b=10\\\frac{1}{50}a+\frac{1}{25}b=13\end{cases}\Rightarrow}\hept{\begin{cases}\frac{1}{50}a+\frac{1}{25}b-\frac{1}{50}a-\frac{1}{50}b=13-10\\\frac{1}{50}a+\frac{1}{50}b=10\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\frac{1}{50}b=3\\a+b=500\end{cases}\Rightarrow}\hept{\begin{cases}b=150\\a=350\end{cases}}\) (thỏa mãn)
Vậy học kỳ 1 có 150 HSG, 350 học sinh khá.
Gọi x, y (học sinh) lần lượt là số học sinh giỏi, khá học kì I (x,y ∈N*)
Tổng số học sinh đạt loại giỏi và khá ở học kỳ I: x+y=500 (học sinh) (1)
Tổng số học sinh đạt loại giỏi và khá ở học kỳ II:
(100%x+4%x)+(100%y+2%y)= 513 <=> 1,04x+1,02y=513 (học sinh) (2)
Từ (1), (2) ta có hệ phương trình:
\(\left\{{}\begin{matrix}x+y=500\\1,04x+1,02y=513\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=150\\y=350\end{matrix}\right.\) (nhận)
=> số học sinh khá ở HKI là 350 học sinh, giỏi là 150 học sinh
Số học sinh giỏi ở HKII: 100%.150+4%.150= 156 (học sinh)
Số học sinh khá ở HKII: 100%.350+2%.350=357 (học sinh)
Số tiền để mua tập với giá thị trường (9500 đồng/ quyển) là:
156.15.9500 +357.10.9500= 56 145 000 (đồng)
Vì hóa đơn có trị giá là 56 145 000 đồng, trên 50 000 000 đồng nên được giảm 8%, như vậy nhà trường phải trả số tiền:
100%.56 145 000-8%.56 145 000= 51 653 400 (đồng)
Vậy nhà trường phải trả số tiền là 51 653 400 đồng để mua tập làm phần thưởng.
tui thường đặt lời giải dài ấy nên tui ủng hộ bạn đặt ngắn hơn nghen.
Gọi số học sinh giỏi của lớp là x (\(x\in N\)*)
số học sinh giỏi của lớp lày (\(Y\in N\)*)
Theo đề bài nếu 1 học sinh giỏi chuyển đi thì \(\dfrac{1}{6}\) số học sinh còn lại là học sinh giỏi
\(\Rightarrow\left(x-1\right)=\dfrac{1}{6}\left(x+y-1\right)\)
\(\Leftrightarrow x-1=\dfrac{1}{6}x.\dfrac{1}{6}y-\dfrac{1}{6}\)
\(\Leftrightarrow\dfrac{5}{6}x-\dfrac{1}{6}y-\dfrac{5}{6}=0\)
\(\Leftrightarrow5x-y-5=0\)
\(\Leftrightarrow5x-y=5\left(1\right)\)
Nếu 1 học sinh khá chuyển đi thì \(\dfrac{1}{5}\) số học sinh còn lại là học sinh khá
\(\Leftrightarrow y-1=\dfrac{4}{5}\left(x+y-1\right)\)
\(y-1=\dfrac{4}{5}x+\dfrac{4}{5}y-\dfrac{4}{5}\)
\(\Leftrightarrow\dfrac{1}{5}y-\dfrac{4}{5}x-\dfrac{1}{5}=0\)
\(\Leftrightarrow y-4x=1\left(2\right)\)
Từ (1) và (2) ta có hệ phương trình:
\(x=6\)
\(\Rightarrow y=25\)
Số học sinh của lớp là \(6+25=31\) (học sinh)
-Chúc bạn học tốt-