K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 12 2022

\(a,3x\left(x+1\right)+9\left(x+1\right)\\ =\left(3x+9\right)\left(x+1\right)\\ =3\left(x+3\right)\left(x+1\right)\\ b,x^2-5xy+2x-10y\\ =x\left(x-5y\right)+2\left(x-5y\right)\\ =\left(x+2\right)\left(x-5y\right)\)

26 tháng 12 2022

BÀI 2: Phân tích thành nhân tử .

`a, 3x(x+1)+9(x+1)`

`= (x+1)(3x+9)`

`=3(x+1)(x+3)`

`b,x^2-5xy+2x-10y`

`=x(x-5y)+2(x-5y)`

`=(x-5y)(x+2)`

15 tháng 6 2021

bài 1:

a) x(x-2)-5y-(x-2)=(x-5y)(x-2)

b) =(2x-3-4x)(2x-3+4x)=(-2x-3)(6x-3)

bài 2 bạn tự luyện nhé

3 tháng 9 2021

????

24 tháng 3 2020

a, x2-5xy+2x-10y = (x2 + 2x)-(5xy+10y)

                            = x(x+2)-5y(x+2)

                            = (x+2)(x-5y)

b, x2-5x+4 = x2- x - 4x +4

                  = (x2-x)-(4x-4)

                  =x(x-1)-4(x-4)

                  =(x-1)(x-4)

14 tháng 12 2020

\(a,x^2-5xy+2x-10y\)

\(=\left(x^2-5xy\right)+\left(2x-10y\right)\)

\(=x\left(x-5y\right)+2\left(x-5y\right)\)

\(=\left(x-5y\right)\left(x+2\right)\)

\(b,x^2-5x+4\)

\(=x^2-4x-x+4\)

\(=x\left(x-4\right)-\left(x-4\right)\)

\(=\left(x-1\right)\left(x-4\right)\)

22 tháng 9 2019

Bạn tải ứng dụng PhotoMath về nha. Ứng dụng này sẽ giải toán số chi tiết

22 tháng 9 2019

a) \(x^3-4x^2-12x+27\)

\(=\left(x^3+27\right)-\left(4x^2+12x\right)\)

\(=\left(x+3\right)\left(x^2-3x+9\right)-4x\left(x+3\right)\)

\(=\left(x+3\right)\left(x^2-7x+9\right)\)

b) \(x^3-3x^2-4x+12\)

\(=x^2\left(x-3\right)-4\left(x-3\right)\)

\(=\left(x^2-4\right)\left(x-3\right)\)

\(=\left(x+2\right)\left(x-2\right)\left(x-3\right)\)

a) \(9x^2+6xy+y^2=\left(3x+y\right)^2\)

b) \(6x-9-x^2=-\left(x-3\right)^2\)

1 tháng 10 2016

a) \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)

\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)

\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)

\(=\left(-x-3y-5\right)\left(7x+9y-1\right)\)

b) \(3x^4y^2+3x^3y^2+3xy^2+3y^2\)

\(=\left(3x^4y^2+3xy^2\right)+\left(3x^3y^2+3y^2\right)\)

\(=3xy^2\left(x^3+1\right)+3y^2\left(x^3+1\right)\)

\(=\left(3xy^2+3y^2\right)\left(x^3+1\right)\)

\(=3y^2\left(x+1\right)\left(x+1\right)\left(x^2-x+1\right)\)

\(=3y^2\left(x+1\right)^2\left(x^2-x+1\right)\)

c) \(\left(x+y\right)^3-1-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left[\left(x+y\right)^2+x+y+1\right]-3xy\left(x+y-1\right)\)

\(=\left(x+y-1\right)\left(x^2+2xy+y^2+x+y+1-3xy\right)\)

\(=\left(x+y-1\right)\left(x^2+x+y^2+y+1-xy\right)\)

13 tháng 11 2021

\(1,\\ a,=10x^2y\\ b,=x^2+7x\\ 2,\\ =x\left(3y+11z\right)\)

14 tháng 11 2021

Bài 1:

\(a,=3x\left(3xy+5y-1\right)\\ b,=\left(z-2\right)\left(3z-5\right)\\ c,=\left(x+2y\right)^2-4z^2=\left(x+2y+2z\right)\left(x+2y-2z\right)\\ d,=x^2-3x+5x-15=\left(x-3\right)\left(x+5\right)\)

Bài 2:

\(a,\Leftrightarrow x\left(x-4\right)=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\\ b,\Leftrightarrow2x+2-4x^2-12x=9\\ \Leftrightarrow4x^2+10x+7=0\\ \Leftrightarrow4\left(x^2+\dfrac{5}{2}x+\dfrac{25}{16}\right)+\dfrac{3}{4}=0\\ \Leftrightarrow4\left(x+\dfrac{5}{6}\right)^2+\dfrac{3}{4}=0\left(vô.lí\right)\\ \Leftrightarrow x\in\varnothing\\ c,\Leftrightarrow x^2-12x+36=0\\ \Leftrightarrow\left(x-6\right)^2=0\\ \Leftrightarrow x=6\)