Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 2x - 3 > 3(x - 2)
<=> 2x - 3 > 3x - 6
<=> -x > -3
<=> x < 3
b) \(\frac{12x+1}{12}\le\frac{9x+1}{3}-\frac{8x+1}{4}\)
\(\Leftrightarrow\frac{12x+1}{12}\le\frac{4\left(9x+1\right)}{12}-\frac{3\left(8x+1\right)}{12}\)
\(\Leftrightarrow12x+1\le36x+4-24x-3\)
\(\Leftrightarrow0x\le0\)
=> bpt vô số nghiệm
(Bạn tự biểu diễn tập nghiệm nha)
a) Thay x = 3 vào bất phương trình ta được: 2.3 + 3 < 9 <=> 9 < 9 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình2x + 3 < 9
b) Thay x = 3 vào bất phương trình ta có: -4.3 > 2.3 + 5 => -12 > 11 (khẳng định sai)
Vậy x = 3 không là nghiệm của bất phương trình -4x > 2x + 5
c) Thay x = 3 vào bất phương trình ta có: 5 - 3 > 3.3 -12 => 2 > -3 (khẳng định đúng)
Vậy x = 3 là nghiệm của bất phương trình 5 - x > 3x - 12
g: =>12x+1>=36x+12-24x-3
=>12x+1>=12x+9(loại)
h: =>6(x-1)+4(2-x)<=3(3x-3)
=>6x-6+8-4x<=9x-9
=>2x+2<=9x-9
=>-7x<=-11
=>x>=11/7
i: =>4x^2-12x+9>4x^2-3x
=>-12x+9>-3x
=>-9x>-9
=>x<1
a: 2x-1>=5
nên 2x>=6
hay x>=3
b: \(\dfrac{x-2}{3}>=x-\dfrac{x-1}{2}\)
=>2x-4>=6x-3(x-1)
=>2x-4>=6x-3x+3
=>2x-4>=3x+3
=>-x>=7
hay x<=-7
a.\(2x-1\ge5\)
\(\Leftrightarrow2x\ge6\)
\(\Leftrightarrow x\ge3\)
Vậy \(S=\left\{x|x\ge3\right\}\)
b.\(\dfrac{x-2}{3}\ge x-\dfrac{x-1}{2}\)
\(\Leftrightarrow\dfrac{2\left(x-2\right)}{6}\ge\dfrac{6x-3\left(x-1\right)}{6}\)
\(\Leftrightarrow2\left(x-2\right)\ge6x-3\left(x-1\right)\)
\(\Leftrightarrow2x-4\ge6x-3x+3\)
\(\Leftrightarrow-x\ge7\)
\(\Leftrightarrow x\le7\)
Vậy \(S=\left\{x|x\le7\right\}\)
a: =>4x^2-4x+1+7>4x^2+3x+1
=>-4x+8>3x+1
=>-7x>-7
=>x<1
b: \(\Leftrightarrow12x+1>=36x+12-24x-3\)
=>1>=9(loại)
\(a)x+3>5\\ \Leftrightarrow x>5-3\\ \Leftrightarrow x>2\)
Vậy bất phương trình có tập nghiệm là: \(S=\left\{x|x>2\right\}\)
Biểu diễn:
\(b)x+2\le3x+4\\ \Leftrightarrow x-3x\le4-2\\ \Leftrightarrow-2x\le2\\ \Leftrightarrow x\ge-1\)
Vậy bất phương trình có tập nghiệm là:\(S=\left\{x|x\ge-1\right\}\)
Biểu diễn:
\(c)2x-7>8-x\\ \Leftrightarrow2x+x>8+7\\ \Leftrightarrow3x>15\\ \Leftrightarrow x>5\)
Vậy bất phương trình có tập nghiệm là:\(S\left\{x|x>5\right\}\)
Biểu diễn:
a: 2x-3>3(x-2)
=>2x-3>3x-6
=>-x>-3
hay x<3
b: \(\dfrac{12x+1}{12}< =\dfrac{9x+1}{3}-\dfrac{8x+1}{4}\)
=>12x+1<=36x+4-24x-3
=>12x+1<=12x+1(luôn đúng)