Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với mọi x, y khác 0 ta có
\(x^4>0\)
\(y^4>0\)
=> \(x^4.y^4>0\)
=> A > 0 \(\forall x,y\ne0\)
a) Ta có: \(A=2xy^2\cdot\left(\dfrac{1}{2}x^2y^2x\right)\)
\(=x^4y^4\)
b) Bậc của đơn thức là 8
a: \(M=\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot x^3\cdot xy^2=\dfrac{1}{2}x^4y^2\)
Hệ số là 1/2
biến là \(x^4;y^2\)
b: Bậc là 6
c: Thay x=-1 và y=2 vào M, ta được:
\(M=\dfrac{1}{2}\cdot\left(-1\right)^4\cdot2^2=\dfrac{1}{2}\cdot4=2\)
a: M=23⋅34⋅x3⋅xy2=12x4y2M=23⋅34⋅x3⋅xy2=12x4y2
Hệ số là 1/2
biến là x4;y2x4;y2
b: Bậc là 6
c: Thay x=-1 và y=2 vào M, ta được:
M=12⋅(−1)4⋅22=12⋅4=2
Bài 7
\(-3y\left(x^2y^2\right)\left(-x^3y^9\right)=3x^5y^{12}\)
hệ sô : 3 ; biến x^5y^12 ; bậc 17
1 ) a) \(4x^2-x^2+8x^2\)
\(=\left(4+8\right).x^2+x^2-x^2\)
\(=12.x^3\)
b) \(\frac{1}{2}.x^2.y^2-\frac{3}{4}.x^2.y^2+x^2.y^2\)
\(\left(\frac{1}{2}-\frac{3}{4}\right).x^2.x^2.x^2.+y^2+y^2+y^2\)
\(=-\frac{1}{4}.x^6+y^6\)
c) \(3y-7y+4y-6y\)
\(=\left(3-7+4-6\right).y.y.y.y\)
\(=-6.y^4\)
2)
\(\left(-\frac{2}{3}.y^3\right)+3y^2-\frac{1}{2}.y^3-y^2\)
\(\left(-\frac{2}{3}+3-\frac{1}{2}\right).y^3.y^3-y\)
\(=\frac{25}{6}.y^5\)
b) \(5x^3-3x^2+x-x^3-4x^2-x\)
\(=\left(5-3-4\right).\left(x^3.x^2+x-x^3-x^2-x\right)\)
\(=-2.0=0\)
hông chắc
3)a) \(5xy^2.\frac{1}{2}x^2y^2x\)
\(\left(5.\frac{1}{2}\right).x^2.x^2.x.y^2.y^2\)
\(=\frac{5}{2}.x^5.y^4\)
b) Tổng các bậc của đơn thức là
5+4 = 9
Hệ số của đơn thức là \(\frac{5}{2}\)
Phần biến là x;y
Thay x=1;y=-1 vào đơn thức
\(\frac{5}{2}.1^5.\left(-1\right)^4\)
\(\frac{5}{2}.1.\left(-1\right)\)
\(\frac{5}{2}.\left(-1\right)=-\frac{5}{2}\)
Vậy ....
chắc không đúng đâu uwu
\(A=\dfrac{2}{5}x^7y^3\)
Hệ số: \(\dfrac{2}{5}\)
Bậc: 10