K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2018

giúp mình với sắp thi rồi

19 tháng 7 2018

Bạn tự vẽ hình nhé.

a) Ta có: EF, FG; GN; NE lần lượt là đường trung bình của \(\Delta ABC;\Delta BCD;\Delta CDA;\Delta DAB\)

\(\Rightarrow\hept{\begin{cases}EF=\frac{1}{2}AB;EF//AC\\GN=\frac{1}{2}AB;GN//AC\\FC//BC\end{cases}}\Rightarrow AC\perp BD\)

\(\Rightarrow\hept{\begin{cases}EFGH\text{ là HBH}\\AC\perp BD\\FG//BD;EF//AC\end{cases}}\Rightarrow EF\perp FG\)

=> EFGH là HCN

b) Dựa câu a) để làm nhé

22 tháng 12 2018

Tứ giác có thể là hình vuông, chữ nhật phải không bạn?

P/s: Hỏi thôi chớ không trả lời đâu :D

9 tháng 9 2019

Giải bài 88 trang 111 Toán 8 Tập 1 | Giải bài tập Toán 8

Ta có: EB = EA, FB = FC (gt)

⇒ EF là đường trung bình của ΔABC

⇒ EF // AC và EF = AC/2.

HA = HD, HC = GD

⇒ HG là đường trung bình của ΔADC

⇒ HG // AC và HG = AC/2.

Do đó EF // HG, EF = HG

⇒ EFGH là hình bình hành.

a) Hình bình hành EFGH là hình chữ nhật ⇔ EH ⊥ EF

⇔ AC ⊥ BD (vì EH // BD, EF// AC)

b) Hình bình hành EFGH là hình thoi

⇔ EF = EH

⇔ AC = BD (Vì EF = AC/2, EH = BD/2)

c) EFGH là hình vuông

⇔ EFGH là hình thoi và EFGH là hình chữ nhật

⇔ AC = BD và AC ⊥ DB.

21 tháng 4 2017

undefined

21 tháng 4 2017

Screenshot_48

Ta có : HE, GF lần lượt là đường trung bình của tam giác ADB và tam giác CDB

=> HE // BD, GF // BD và BD = 2HE = 2GF

Tương tự : HG, EF lần lượt là đường trung bình của tam giác DAC và tam giác BAC

=> HG // AC, EF // AC và AC = 2HG = 2EF

Nên EFGH là hình bình hành.

a) Đề hình bình hành EFGH là hình chữ nhật thì EH ⊥ EF => BD ⊥ AC

Điều kiện phải tìm : Hai đường chéo AC, BD vuông góc với nhau.

b) Để hình bình hành EFGH là hình thoi thì EH = EF => BD = AC

Điều kiện phải tìm : Hai đường chéo AC và BD bằng nhau.

c) Để hình bình hành EFGH là hình vuông thì EFGH phải vừa là hình chữ nhật, vừa là hình thoi => BD ⊥ AC và BD = AC.

Điều kiện phải tìm : Hai đường chéo AC, BD vuông góc với nhau và bằng nhau.

9 tháng 7 2018

a) Ta có EFGH là hình chữ nhật (Tứ giác có 3 góc vuông)

b)   S A B C D = 1 2 A C . B D = 30 c m 2

c) SEFGH = EF.FG = 15cm2

29 tháng 10 2021

Xét ΔABD có 

E là trung điểm của AB

H là trung điểm của AD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//BD và \(EH=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

F là trung điểm của BC

G là trung điểm của CD

Do đó: FG là đường trung bình của ΔBCD

Suy ra: FG//BD và \(FG=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra EH//FG và EH=FG

hay EHGF là hình bình hành