Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{x}{y}< \frac{x+m}{y+m}\)khi 0<x<y,m>0
Áp dụng ta được
\(\frac{a+b}{a+b+c}< \frac{a+b+d}{a+b+c+d}\)
\(\frac{b+c}{b+c+d}< \frac{a+b+c}{a+b+c+d}\)
....................................................
Khi đó
\(VT< \frac{a+b+d+a+b+c+c+d+b+d+a+c}{a+b+c+d}=3\)
Vậy VT<3
a/ Gọi giao của HD với AB là I, giao của HE với AC là K
+ Xét tam giác AHE có
KH=KE (E, H đối xứng qua K) => AK là trung tuyến
AK vuông góc HE (E, H đối xứng qua AC) => AK là đường cao
=> Tam giác AHE là tam giác cân tại A (Tam giác có đường cao vừa là đường trung tuyến => tam giác cân)
=> AK là phân giác của ^HAE (Trong tam giác cân đường cao đồng thời là đường phân giác của góc ở đỉnh)
=> ^HAK=^KAE
+ Xét tam giác DAH chứng minh tương tự như với tam giác AHE => ^HAI=^IAD
+ Mà ^HAK+^HAI=^BAC=90 => ^KAE+^IAD=90
=> ^IAD+^HAI+^HAK+^KAE=^DAE=180 => A,D,E thẳng hàng
b/
+ Xét tam giác CEH, chứng minh tương tự như với tam giác AHE ở câu a/ ta cũng có tam giác CEH là tam giác cân tại C
=> ^CHE=^CEH
+ Ta có ^AHE=^AEH (tam giác AHE cân)
=> ^AHC=^CHE+^AHE=CEH+^AEH=^AEC=90
+ Chứng minh tương tự khi vét tam giác BHD ta cũng có kết quả ^ADB=90
=> BDEC là hình thang vuông
c/
+ CE=CH (tam giác CHE cân tại C)
+ BD=BH (tam giác BHD cân tại B)
=> BD+CE=BH+CH=BC
cac giup minh di minh sap phai nop roi
a2+4b2+4c2>= 4ab-4ac+8bc
a2+4b2+4c2 - 4ab +4ac-8bc
(a2 - 4ab+4b2)+4c2+(4ac-8bc>=0)
suy ra (a-2b2)+2.2c.(a-2b)+(2c)2
(a-2b+2c)2>=0
dau = xảy ra khi va chỉ khi a+2c=2b
a2+4b2+4c2>= 4ab-4ac+8bc(dpcm)