Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trục căn thức lên rồi tính như bình thường thôi.
Bạn chưa hiểu thì nhắn tin cho mình, mình làm cho.
Chúc bạn học tốt nhea. =)
a) \(\frac{\sqrt{5}+\sqrt{3}}{\sqrt{5}-\sqrt{3}}+\frac{\sqrt{5}-\sqrt{3}}{\sqrt{5}+\sqrt{3}}\)
=\(\frac{\left(\sqrt{5}+\sqrt{3}\right)^2+\left(\sqrt{5}-\sqrt{3}\right)^2}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
=\(\frac{8+2\sqrt{15}+8-2\sqrt{15}}{2}\)
=\(\frac{16}{2}=8\)
Tạm thời mih bận nên chỉ kịp lm 1 câu thôi, khi nao có time mih lm típ nha
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{1+2\sqrt{5}+\left(\sqrt{5}\right)^2}+\sqrt{1-2\sqrt{5}+\left(\sqrt{5}\right)^2}\)\(=\sqrt{\left(1+\sqrt{5}\right)^2}+\sqrt{\left(1-\sqrt{5}\right)^2}=1+\sqrt{5}-\left(1-\sqrt{5}\right)=1+\sqrt{5}-1+\sqrt{5}=2\sqrt{5}\)
a) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}\)
\(=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
b) \(\sqrt{13+4\sqrt{10}}+\sqrt{13-4\sqrt{10}}\)
\(=\sqrt{\left(2\sqrt{2}+\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)
\(=2\sqrt{2}+\sqrt{5}+2\sqrt{2}-\sqrt{5}=4\sqrt{2}\)
c) \(\sqrt{8\sqrt{3}}-2\sqrt{25\sqrt{12}}+4\sqrt{\sqrt{192}}\)
\(=2\sqrt{2\sqrt{3}}-10\sqrt{2\sqrt{3}}+8\sqrt{2\sqrt{3}}=0\)
Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!
a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
<=> \(A^3=4+3\sqrt[3]{4-5}.A\)
<=> \(A^3=4-3A\)
<=> \(A^3+3A-4=0\)
<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)
Có: \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
=> \(A-1=0\)
<=> \(A=1\)
=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
VẬY TA CÓ ĐPCM
a. Sửa đề: \(\left(3+\sqrt{5}\right)\left(\sqrt{10}-\sqrt{2}\right)\sqrt{3-\sqrt{5}}=8\)
biến đổi vế trái :
ta có :\(\left(3+\sqrt{5}\right)\left(\sqrt{10}+\sqrt{2}\right)\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3+\sqrt{5}}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right).\sqrt{3-\sqrt{5}}\)
=\(\sqrt{3^2-\left(\sqrt{5}\right)^2}.\sqrt{3+\sqrt{5}}.\left(\sqrt{10}-\sqrt{2}\right)\)
=2(\(\sqrt{30+10\sqrt{5}}-\sqrt{6+2\sqrt{5}}\))
=2(\(\sqrt{5}+5-\sqrt{5}-1\))
=2.4=8=VP
=> đpcm
b. Đặt vế trái là A
ta có \(A^2=\sqrt{2}+1-2\sqrt{\left(\sqrt{2}+1\right)\left(\sqrt{2}-1\right)}+\sqrt{2}-1\)
=\(2\sqrt{2}-2\)
=2\(\left(\sqrt{2}-1\right)\)
=> A=\(\sqrt{2\left(\sqrt{2}-1\right)}\)
vậy VT=VP =>đpcm
\(\sqrt{4x+8}+3\sqrt{x+2}=3+\dfrac{4}{5}\sqrt{25x+50}\left(x\ge-2\right)\)
\(\Rightarrow2\sqrt{x+2}+3\sqrt{x+2}-4\sqrt{x+2}=3\Rightarrow\sqrt{x+2}=3\Rightarrow x=7\)
\(\sqrt{2+\sqrt{3}}+\sqrt{2-\sqrt{3}}=\sqrt{\dfrac{4+2\sqrt{3}}{2}}+\sqrt{\dfrac{4-2\sqrt{3}}{2}}\)
\(=\sqrt{\dfrac{\left(\sqrt{3}+1\right)^2}{2}}+\sqrt{\dfrac{\left(\sqrt{3}-1\right)^2}{2}}=\dfrac{\sqrt{3}+1}{\sqrt{2}}+\dfrac{\sqrt{3}-1}{\sqrt{2}}=\dfrac{2\sqrt{3}}{\sqrt{2}}=\sqrt{6}\)