K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 2 2016

\(\frac{n+1}{n-3}=\frac{n-3+4}{n-3}=1+\frac{4}{n-3}\)

để A là ps tối giản thì 4 p chia hết cho n-3

suy ra n-3 thuộc{ -4;-2;-1;1;2;4}

 ta có:n-3=-4 suy ra n=-1

         n-3=-2 suy ra n=1

         n-3=-1 suy ra n=2

         n-3=1 suy ra n=4

         n-3=2 suy ra n=5

         n-3=4 suy ra n=7

14 tháng 2 2016

khó @gmail.com

7 tháng 4 2018

\(a)\) Ta có : 

\(A=\frac{8n}{4n-3}=\frac{8n-6+6}{4n-3}=\frac{8n-6}{4n-3}+\frac{6}{4n-3}=\frac{2\left(4n-3\right)}{4n-3}+\frac{6}{4n-3}=2+\frac{6}{4n-3}\)

Để A có giá trị nguyên thì \(\frac{6}{4n-3}\) phải có giá trịn nguyên hay \(6⋮\left(4n-3\right)\)\(\Rightarrow\)\(\left(4n-3\right)\inƯ\left(6\right)\)

Mà \(Ư\left(6\right)=\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

Suy ra : 

\(4n-3\)\(1\)\(-1\)\(2\)\(-2\)\(3\)\(-3\)\(6\)\(-6\)
\(n\)\(1\)\(\frac{1}{2}\)\(\frac{5}{4}\)\(\frac{1}{4}\)\(\frac{3}{2}\)\(0\)\(\frac{9}{4}\)\(\frac{-3}{4}\)

Vì \(n\inℤ\) nên \(n\left\{0;1\right\}\)

Vậy \(n\in\left\{0;1\right\}\) thì A có giá trị nguyên 

Chúc bạn học tốt ~ 

7 tháng 4 2018

\(b)\) Ta có : 

\(A=\frac{8n}{4n-3}=2+\frac{6}{4n-3}\) ( câu a mình có phân tích rùi ) 

Để A đạt GTNN thì \(\frac{6}{4n-3}\) phải đạt GTNN hay \(4n-3< 0\) và đạt GTLN 

\(\Rightarrow\)\(4n-3=-1\)

\(\Leftrightarrow\)\(4n=2\)

\(\Leftrightarrow\)\(n=\frac{1}{2}\) ( loại vì n là số nguyên ) 

\(\Rightarrow\)\(4n-3=-2\)

\(\Leftrightarrow\)\(4n=1\)

\(\Leftrightarrow\)\(\frac{1}{4}\)

\(\Rightarrow\)\(4n-3=-3\)

\(\Leftrightarrow\)\(4n=0\)

\(\Leftrightarrow\)\(n=0\)

Suy ra : 

\(A=\frac{8n}{4n-3}=\frac{8.0}{4.0-3}=\frac{0}{0-3}=0\)

Vậy \(A_{min}=0\) khi \(n=0\)

Chúc bạn học tốt ~