Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có
BC chung
KC=HB
Do đó: ΔKBC=ΔHCB
Suy ra: \(\widehat{OCB}=\widehat{OBC}\)
hay ΔOCB cân tại O
c: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
OB=OC
KB=HC
Do đó: ΔOBK=ΔOCH
Tgiac ABC cân tại A => AB = AC và góc ABC = ACB
a) Xét tgiac ABH và ACK có:
+ AB = AC
+ chung góc A
+ góc AHB = AKC = 90 độ
=> tgiac ABH = ACK (ch-gn)
=> góc ABH = ACK
Mà góc ABC = ACB
=> ABC - ABH = ACB - ACK
=> góc OBC = OCB
=> tgiac OBC cân tại O
=> đpcm
b) Tgiac OBC cân tại O => OB = OC
Xét tgiac OBK và OCH có:
+ góc OKB = OHC = 90 độ
+ OB = OC
+ góc KBO = HCO (cmt)
=> tgiac OBK = OCH (ch-gn)
=> đpcm
c) Xét tgiac ABO và ACO có:
+ OB = OC
+ AO chung
+ AB = AC
=> tgiac ABO = ACO (ccc)
=> góc BAO = CAO
=> tia AO là tia pgiac của góc BAC (1)
Xét tgiac ABI và ACI:
+ AI chung
+ AB = AC
+ IB = IC
=> tgiac ABI = ACI (ccc)
=> góc BAI = CAI
=> AI là tia pgiac góc BAC (2)
(1), (2) => A, O, I thẳng hàng (đpcm)
Bạn tự vẽ hình nhé!!!
Chứng minh:
a)Xét △BAD và △CAD có:
BA=CA(gt)
BADˆ=CADˆ(gt)BAD^=CAD^(gt)
AD chung
⇒△BAD = △CAD (cgc)
⇒ADBˆ=ADCˆ=900⇒ADB^=ADC^=900
⇒AD⊥BC (đpcm)
b)Ta có:
△ABC cân tại A
⇒ABCˆ=ACBˆ⇒1800−ABCˆ=1800−ACBˆ⇒ABC^=ACB^⇒1800−ABC^=1800−ACB^
⇒ABMˆ=ACNˆ(đpcm)⇒ABM^=ACN^(đpcm)
c)Xét △ABM và △ACN có:
AB=AC(gt)
ABMˆ=ACNˆ(cmt)ABM^=ACN^(cmt)
BM=CN (gt)
⇒△ABM = △ACN (cgc)
⇒AM=AN⇒AM=AN(2 cạnh tương ứng)
⇒△AMN cân tại A (đpcm)
d)Từ △AMN cân tại A (câu c)
⇒AMNˆ=ANMˆ⇒AMN^=ANM^ hay HMBˆ=KNCˆHMB^=KNC^
Xét △HMB vuông tại H và △KNC vuông tại K có:
MB=NC (gt)
HMBˆ=KNCˆHMB^=KNC^(cmt)
⇒△HMB =△KNC (cạnh huyền- góc nhọn)
⇒HM=KN⇒HM=KN( 2cạnh tương ứng)
Ta có:
{AM=ANHM=KN{AM=ANHM=KN⇒AM−HM=AN−KN⇒AM−HM=AN−KN
⇒AH=AK(đpcm)⇒AH=AK(đpcm)
e) Từ △HMB =△KNC (câu d)
⇒HBMˆ=KCNˆ⇒HBM^=KCN^ (2 góc tương ứng)
mà HBMˆ=OBCˆHBM^=OBC^ ; KCNˆ=OCBˆKCN^=OCB^ (đối đỉnh)
⇒OBCˆ=OCBˆ⇒OBC^=OCB^
⇒△OBC cân tại O
f)Xét △ACO và △ABO có:
AC=AB (gt)
CO=BO (△OBC cân tại O)
AO chung
⇒△ACO =△ABO (ccc)
⇒CAOˆ=BAOˆ⇒CAO^=BAO^ (2 góc tương ứng)
⇒AO là tia phân giác của BACˆBAC^ (1)
Lại có :AD là tia phân giác của BACˆBAC^ (2)
Từ (1) và (2)
⇒A,D,O⇒A,D,O thẳng hàng (đpcm)
a: Xét ΔABH vuông tại H và ΔACK vuông tại K có
AB=AC
\(\widehat{BAH}\) chung
Do đó: ΔABH=ΔACK
b: Xét ΔOBK vuông tại K và ΔOCH vuông tại H có
KB=HC
\(\widehat{KBO}=\widehat{HCO}\)
Do đó:ΔOBK=ΔOCH
https://olm.vn/hoi-dap/detail/241085926531.html
https://olm.vn/hoi-dap/detail/241085926531.html
https://olm.vn/hoi-dap/detail/241085926531.html
https://olm.vn/hoi-dap/detail/241085926531.html
https://olm.vn/hoi-dap/detail/241085926531.htmlhttps://olm.vn/hoi-dap/detail/241085926531.html
https://olm.vn/hoi-dap/detail/241085926531.html
https://olm.vn/hoi-dap/detail/241085926531.html
https://olm.vn/hoi-dap/detail/241085926531.html
Tgiac ABC cân tại A => AB = AC và góc ABC = ACB
a) Xét tgiac ABH và ACK có:
+ AB = AC
+ chung góc A
+ góc AHB = AKC = 90 độ
=> tgiac ABH = ACK (ch-gn)
=> góc ABH = ACK
Mà góc ABC = ACB
=> ABC - ABH = ACB - ACK
=> góc OBC = OCB
=> tgiac OBC cân tại O
=> đpcm
b) Tgiac OBC cân tại O => OB = OC
Xét tgiac OBK và OCH có:
+ góc OKB = OHC = 90 độ
+ OB = OC
+ góc KBO = HCO (cmt)
=> tgiac OBK = OCH (ch-gn)
=> đpcm
c) Xét tgiac ABO và ACO có:
+ OB = OC
+ AO chung
+ AB = AC
=> tgiac ABO = ACO (ccc)
=> góc BAO = CAO
=> tia AO là tia pgiac của góc BAC (1)
Xét tgiac ABI và ACI:
+ AI chung
+ AB = AC
+ IB = IC
=> tgiac ABI = ACI (ccc)
=> góc BAI = CAI
=> AI là tia pgiac góc BAC (2)
(1), (2) => A, O, I thẳng hàng (đpcm)
1) (Bạn tự vẽ hình giùm)
a/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)
DB = DC (D là trung điểm của BC)
Cạnh AD chung
=> \(\Delta ADB\)= \(\Delta ADC\)(c - c - c) (đpcm)
b/ Ta có \(\Delta ADB\)= \(\Delta ADC\)(cm câu a) => \(\widehat{ADB}=\widehat{ADC}\)(hai góc tương ứng)
Mà \(\widehat{ADB}+\widehat{ADC}\)= 180o (kề bù)
=> 2\(\widehat{ADB}\)= 180o
=> \(\widehat{ADB}\)= 90o
=> AD \(\perp\)BC (đpcm)
c/ Ta có D là trung điểm của BC (gt) => DB = DC = \(\frac{BC}{2}=\frac{12}{2}\)= 6 (cm)
và \(\Delta ADC\)vuông tại D => AD2 + DC2 = AC2 (định lí Pitago)
=> AD2 = AC2 - DC2
=> AD2 = 102 - 62
=> AD2 = 100 - 36
=> AD2 = 64
=> AD = \(\sqrt{64}\)= 8 (cm)
d/ \(\Delta BDE\)vuông và \(\Delta CDF\)vuông có: BD = CD (D là trung điểm của BC)
\(\widehat{B}=\widehat{C}\)(\(\Delta ABC\)cân tại A)
=> \(\Delta BDE\)vuông = \(\Delta CDF\)vuông (cạnh huyền - góc nhọn) => DE = DF (hai cạnh tương ứng)
=> \(\Delta DEF\)cân tại D (đpcm)
Bn ơi b2 nữa nha