Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ OF//BC(F thuộc AC)
=>OF//DE//BC
DE//BC
=>góc DEA=góc ACB
=>góc DEO=1/2*góc ACB
ED//OF
=>góc DEA=góc CFD và góc DEO=góc EOF
=>góc EOF=1/2*góc ACB
=>góc DEO=góc EOF
OF//BC
=>góc FOB=góc OBC=1/2góc ABC
góc BOE=góc BOF+góc EOF
=1/2(góc ABC+góc ACB)
Xét ΔABC có
\(\widehat{A}+\widehat{B}+\widehat{C}=180^0\)
\(\Leftrightarrow2\cdot\left(\widehat{IBC}+\widehat{ICB}\right)=180^0-\alpha\)
\(\Leftrightarrow\widehat{IBC}+\widehat{ICB}=\dfrac{180^0-\alpha}{2}\)
Xét ΔIBC có
\(\widehat{BTC}+\widehat{IBC}+\widehat{ICB}=180^0\)
\(\Leftrightarrow\widehat{BTC}=180^0-\dfrac{180^0-\alpha}{2}=\dfrac{180^0+\alpha}{2}\)
a: góc I+1/2*góc OCB
=góc I+góc ICA
=góc CED(Góc ngoàI)
góc A+1/2góc ODA
=góc A+EDA
=180 độ-góc AED
=góc CED(góc ngoài)
b: góc I+1/2*góc ODA
=góc I+góc IDF
=180 độ-góc IFD
=180 độ-góc BFC
=góc B+góc BCF
=góc B+1/2*góc BCA
Bổ sug đề: Cho (O), BD,CE là các dây của (O)
Sửa đề: Chứng minh góc BOE=góc EDB+góc ECB
1/2(góc EDB+góc ECB)
=1/2(1/2sđ cung EB+1/2sđ cung EB)
=1/2sđ cung EB
=1/2*góc BOE
=>góc EDB+góc ECB=góc BOE