K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 12 2022

`B17:`

`a)` Với `x \ne +-3` có:

`A=[x+15]/[x^2-9]+2/[x+3]`

`A=[x+15+2(x-3)]/[(x-3)(x+3)]`

`A=[x+15+2x-6]/[(x-3)(x+3)]`

`A=[3x+9]/[(x-3)(x+3)]=3/[x-3]`

`b)A=[-1]/2<=>3/[x-3]=-1/2<=>-x+3=6<=>x=-3` (ko t/m)

   `=>` Ko có gtr nào của `x` t/m

`c)A in ZZ<=>3/[x-3] in ZZ`

   `=>x-3 in Ư_3`

 Mà `Ư_3={+-1;+-3}`

`@x-3=1=>x=4`

`@x-3=-1=>x=2`

`@x-3=3=>x=6`

`@x-3=-3=>x=0`

________________________________

`B18:`

`a)M=1/3`             `ĐK: x  \ne +-4`

`<=>(4/[x-4]-4/[x+4]).[x^2+8x+16]/32=1/3`

`<=>[4(x+4)-4(x-4)]/[(x-4)(x+4)].[(x+4)^2]/32=1/3`

`<=>32/[x-4].[x+4]/32=1/3`

`<=>3x+12=x-4`

`<=>x=-8` (t/m)

ĐKXĐ: \(x\notin\left\{2;-2;-1\right\}\)

a) Ta có: \(A=\left(\dfrac{x}{x^2-4}-\dfrac{4}{2-x}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)

\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}+\dfrac{4\left(x+2\right)}{\left(x-2\right)\left(x+2\right)}+\dfrac{1}{x+2}\right):\dfrac{3\left(x+1\right)}{x\left(x+2\right)}\)

\(=\left(\dfrac{x+4x+8}{\left(x-2\right)\left(x+2\right)}+\dfrac{x-2}{\left(x+2\right)\left(x-2\right)}\right)\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{5x+8+x-2}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6x+6}{\left(x+2\right)\left(x-2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)

\(=\dfrac{6\left(x+1\right)}{x-2}\cdot\dfrac{x}{3\left(x+1\right)}\)

\(=\dfrac{2x}{x-2}\)

b) Để A nguyên thì \(2x⋮x-2\)

\(\Leftrightarrow2x-4+4⋮x-2\)

mà \(2x-4⋮x-2\)

nên \(4⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(4\right)\)

\(\Leftrightarrow x-2\in\left\{1;-1;2;-2;4;-4\right\}\)

\(\Leftrightarrow x\in\left\{3;1;4;0;6;-2\right\}\)

Kết hợp ĐKXĐ, ta được:

\(x\in\left\{0;1;3;4;6\right\}\)

Vậy: Khi \(x\in\left\{0;1;3;4;6\right\}\) thì A nguyên

AH
Akai Haruma
Giáo viên
15 tháng 2 2021

Lời giải:

a) ĐKXĐ: \(\left\{\begin{matrix} x+1\neq 0\\ x-1\neq 0\\ 2-2x^2\neq 0\end{matrix}\right.\Leftrightarrow x\neq \pm 1\)

b) 

\(A=\left[\frac{x(x-1)}{(x-1)(x+1)}+\frac{x+1}{(x+1)(x-1)}+\frac{2x}{(x-1)(x+1)}\right].\frac{1}{x+1}=\frac{x^2+2x+1}{(x-1)(x+1)}.\frac{1}{x+1}\)

\(=\frac{(x+1)^2}{(x-1)(x+1)}.\frac{1}{x+1}=\frac{1}{x-1}\)

Để $A$ nguyên thì $1\vdots x-1$

$\Rightarrow x-1\in\left\{\pm 1\right\}$

$\Rightarrow x\in\left\{0;2\right\}$ (đều thỏa mãn đkxđ)

 

a) ĐKXĐ: \(x\notin\left\{1;-1\right\}\)

Ta có: \(A=\left(\dfrac{x}{x+1}+\dfrac{1}{x-1}-\dfrac{4x}{2-2x^2}\right):\left(x+1\right)\)

\(=\left(\dfrac{2x\left(x-1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{2\left(x+1\right)}{2\left(x+1\right)\left(x-1\right)}+\dfrac{4x}{2\left(x+1\right)\left(x-1\right)}\right)\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2x^2-2x+2x+2+4x}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2x^2+4x+2}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2\left(x^2+2x+1\right)}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{2\left(x+1\right)^2}{2\left(x+1\right)^2\cdot\left(x-1\right)}\)

\(=\dfrac{1}{x-1}\)

b) Để A nguyên thì \(1⋮x-1\)

\(\Leftrightarrow x-1\inƯ\left(1\right)\)

\(\Leftrightarrow x-1\in\left\{1;-1\right\}\)

hay \(x\in\left\{2;0\right\}\)

Kết hợp ĐKXĐ, ta được: \(x\in\left\{2;0\right\}\)

Vậy: Để A nguyên thì \(x\in\left\{2;0\right\}\)

14 tháng 12 2018

a,ĐK:  \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)

b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)

\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)

\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)

c, Với x = 4 thỏa mãn ĐKXĐ thì

\(A=\frac{-3}{4-3}=-3\)

d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)

\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)

Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)

1: Ta có: \(A=\left(\dfrac{x^2-16}{x-4}-1\right):\left(\dfrac{x-2}{x-3}+\dfrac{x+3}{x+1}+\dfrac{x+2-x^2}{x^2-2x-3}\right)\)

\(=\left(x+4-1\right):\left(\dfrac{\left(x-2\right)\left(x+1\right)}{\left(x-3\right)\left(x+1\right)}+\dfrac{\left(x+3\right)\left(x-3\right)}{\left(x+1\right)\left(x-3\right)}+\dfrac{-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\right)\)

\(=\left(x+3\right):\dfrac{x^2+x-2x-2+x^2-9-x^2+x+2}{\left(x-3\right)\left(x+1\right)}\)

\(=\left(x+3\right):\dfrac{x^2-9}{\left(x-3\right)\left(x+1\right)}\)

\(=\dfrac{\left(x+3\right)\left(x-3\right)\left(x+1\right)}{x^2-9}\)

\(=x+1\)

ĐKXĐ: \(x\notin\left\{4;3;-1\right\}\)

2: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì \(x+1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1-1⋮x^2+x+1\)

mà \(x^2+x+1⋮x^2+x+1\)

nên \(-1⋮x^2+x+1\)

\(\Leftrightarrow x^2+x+1\inƯ\left(-1\right)\)

\(\Leftrightarrow x^2+x+1\in\left\{1;-1\right\}\)

\(\Leftrightarrow x^2+x\in\left\{0;-2\right\}\)

\(\Leftrightarrow x^2+x=0\)(Vì \(x^2+x>-2\forall x\))

\(\Leftrightarrow x\left(x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\left(nhận\right)\\x=-1\left(loại\right)\end{matrix}\right.\)

Vậy: Để \(\dfrac{A}{x^2+x+1}\) nhận giá trị nguyên thì x=0

2 tháng 2 2022

Bài 1: ĐKXĐ:`x + 3 ne 0` và `x^2+ x-6 ne 0 ; 2-x ne 0`

`<=> x ne -3 ; (x-2)(x+3) ne 0 ; x ne2`

`<=>x ne -3 ; x ne 2`

b) Với `x ne - 3 ; x ne 2` ta có:

`P= (x+2)/(x+3)  - 5/(x^2 +x -6) + 1/(2-x)`

`P = (x+2)/(x+3) - 5/[(x-2)(x+3)] + 1/(2-x)`

`= [(x+2)(x-2)]/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`

`= (x^2 -4)/[(x-2)(x+3)] - 5/[(x-2)(x+3)] - (x+3)/[(x-2)(x+3)]`

`=(x^2 - 4 - 5 - x-3)/[(x-2)(x+3)]`

`= (x^2 - x-12)/[(x-2)(x+3)]`

`= [(x-4)(x+3)]/[(x-2)(x+3)]`

`= (x-4)/(x-2)`

Vậy `P= (x-4)/(x-2)` với `x ne -3 ; x ne 2`

c) Để `P = -3/4`

`=> (x-4)/(x-2) = -3/4`

`=> 4(x-4) = -3(x-2)`

`<=>4x -16 = -3x + 6`

`<=> 4x + 3x = 6 + 16`

`<=> 7x = 22`

`<=> x= 22/7` (thỏa mãn ĐKXĐ)

Vậy `x = 22/7` thì `P = -3/4`

d) Ta có: `P= (x-4)/(x-2)`

`P= (x-2-2)/(x-2)`

`P= 1 - 2/(x-2)`

Để P nguyên thì `2/(x-2)` nguyên

`=> 2 vdots x-2`

`=> x -2 in Ư(2) ={ 1 ;2 ;-1;-2}`

+) Với `x -2 =1 => x= 3` (thỏa mãn ĐKXĐ)

+) Với `x -2 =2 => x= 4`  (thỏa mãn ĐKXĐ)

+) Với `x -2 = -1=> x= 1` (thỏa mãn ĐKXĐ)

+) Với `x -2 = -2 => x= 0`(thỏa mãn ĐKXĐ)

Vậy `x in{ 3 ;4; 1; 0}` thì `P` nguyên

e) Từ `x^2 -9 =0`

`<=> (x-3)(x+3)=0`

`<=> x= 3` hoặc `x= -3`

+) Với `x=3` (thỏa mãn ĐKXĐ) thì:

`P  = (3-4)/(3-2)`

`P= -1/1`

`P=-1`

+) Với `x= -3` thì không thỏa mãn ĐKXĐ

Vậy với x= 3 thì `P= -1`

a: |x-1|=3

=>x-1=3 hoặc x-1=-3

=>x=-2(nhận) hoặc x=4(loại)

Khi x=-2 thì \(A=\dfrac{4+4}{-2-4}=\dfrac{8}{-6}=\dfrac{-4}{3}\)

b: ĐKXĐ: x<>4; x<>-4

\(B=\dfrac{-\left(x+4\right)}{x-4}+\dfrac{x-4}{x+4}-\dfrac{4x^2}{\left(x-4\right)\left(x+4\right)}\)

\(=\dfrac{-x^2-8x-16+x^2-8x+16-4x^2}{\left(x-4\right)\left(x+4\right)}=\dfrac{-4x^2-16x}{\left(x-4\right)\left(x+4\right)}\)

=-4x/x-4

c: A+B

=-4x/x-4+x^2+4/x-4

=(x-2)^2/(x-4)
A+B>0

=>x-4>0

=>x>4