Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, 1/1.2+1/2.3+1/3.4+...+1/999.1000
= 1/1-1/2+1/2-1/3+1/3-1/4+....+1/999-1/1000
= 1/1-1/1000
= 999/1000
b, 1/2.4+1/4.6+1/6.8+1/8.10
= 1/2-1/4+1/4-1/6+1/6-1/8+1/8-1/10
= 1/2-1/10
= 4/10 =2/5
Bài 1 Số số hạng của dãy là : (50-1):1+1=50(số hạng )
S = (50+1) x 50 : 2 = 1275
\(A=\) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(A=\frac{49}{50}\)
\(A=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{49.50}\)
A= \(\frac{1}{1}-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{49}-\frac{1}{51}\)
A = \(\frac{1}{1}-\frac{1}{51}=\frac{50}{51}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2106}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+...+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
\(A=\frac{1}{1}-\frac{1}{2016}=\frac{2015}{2016}\)
\(B=\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{2014.2016}=\frac{1}{4}.\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{1007.1008}\right)\)
=> \(B=\frac{1}{4}.\left(\frac{1}{1}-\frac{1}{1008}\right)=\frac{1}{4}.\frac{1007}{1008}\)
=> \(B=\frac{1007}{4032}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
\(2A=\frac{2}{2.3}+\frac{2}{3.4}+...+\frac{2}{99.100}\)
\(2A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(2A=\frac{1}{1}-\frac{1}{100}\)
\(2A=\frac{99}{100}\Rightarrow A=\frac{99}{100}:2\Rightarrow A=\frac{99}{200}\)
Câu B và C làm tương tự.
bạn Nhi làm sai rồi
\(\frac{2}{2\cdot3}\) sao có thể bằng \(\frac{1}{2}-\frac{1}{3}\) được
\(\frac{1}{2\cdot3}\) mới bằng \(\frac{1}{2}-\frac{1}{3}\)
kết quả là : \(\frac{49}{100}\)
a,A =\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{199.200}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+..+\frac{1}{199}-\frac{1}{200}\)
= 1-\(\frac{1}{200}\)
=\(\frac{199}{200}\)
b, B=\(\frac{3}{2.4}+\frac{3}{4.6}+\frac{3}{6.8}+...+\frac{3}{2018.2020}\)
=3.(\(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+..+\frac{1}{2018.2020}\))
=3(\(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+..+\frac{1}{2018}-\frac{1}{2020}\))
= 3.(\(\frac{1}{2}-\frac{1}{2020}\))
=\(\frac{6057}{2020}\)
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{2009\cdot2010}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2009}-\frac{1}{2010}\)
\(A=1-\frac{1}{2010}\)
\(A=\frac{2009}{2010}\)
gọi tổng của 1+2+3+4+...+79 là M
2+3+4+...+80 là N
ta có A = M.N
từ 1 đến 79 hay từ 2 đến 80 có (79-1) chia 1 + 1=79
M = (79+1).79 chia 2= 3160
N = (80+2).79chia 2= 3239
A = 3160 .3239 = 10235240
A = 1/1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 +...+ 1/2011 - 1/2012
A = 1 - 1/2012
A = 2011/2012
B = 1/2 - 1/4 + 1/4 - 1/6 + 1/6 - 1/8 +...+ 1/2010 - 1/2012
B = 1/2 - 1/2012
B = 1005/2012
mik nghĩ bn nên gõ latex ạ