Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x^4-7x^3+17x^2-20x+14\)
\(=2x^4-3x^3+7x^2-4x^3+6x^2-14x+4x^2-6x+14\)
\(=x^2\left(2x^2-3x+7\right)-2x\left(2x^2-3x+7\right)+2\left(2x^2-3x+7\right)\)
\(=\left(x^2-2x+2\right)\left(2x^2-3x+7\right)\)
a, P(x)=2x4-6x3-x3+3x2-5x2+15x-2x+6
=2x3(x-3)-x2(x-3)-5x(x-3)-2(x-3)
=(x-3)(2x3-x2-5x-2)
=(x-3)(2x3-4x2+3x2-6x+x-2)
=(x-3)[2x2(x-2)+3x(x-2)+(x-2)]
=(x-3)(x-2)(2x2+3x+1)=(x-3)(x-2)(x+1)(2x+1)
b,P(x)=(x-3)(x-2)(x+1)(2x-2+3)
=(x-3)(x-2)(x+1)[2(x-1)+3]
=2(x-3)(x-2)(x-1)(x+1)+3(x-3)(x-2)(x+1)
vì x-3,x-2 là 2 SN liên tiếp nên tích của chúng chia hết cho 2 => (x-3)(x-2)(x+1) chia hết cho 2
=>3(x-3)(x-2)(x+1) chia hết cho 6
lập luận đc (x-3)(x-2)(x-1) là tích 3 SN liên tiếp nên chia hết cho 2 và 3 =>(x-3)(x-2)(x-1) cũng chia hết cho 6
Tóm lại P(x) chia hết cho 6 với mọi x \(\in\) Z
\(b,=x^2-xy=x\left(x-y\right)\\ c,=y\left(x+1\right)+z\left(x+1\right)=\left(y+z\right)\left(x+1\right)\\ d,=x^2+ax+bx+ab\\ =x\left(x+a\right)+b\left(x+a\right)=\left(x+b\right)\left(x+a\right)\)
62462