K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
1 tháng 4 2021

Lời giải:

$x+y-2=0\Rightarrow x+y=2$

a) 

$B=x^4+2x^3y-2x^3+x^2y^2-2x^2y-x(x+y)+2x+3$

$=x^3(x+y)+x^3y-2x^3+x^2y^2-2x^2y-2x+2x+3$

$=2x^3+x^3y-2x^3+x^2y^2-2x^2y+3$

$=x^3y+x^2y^2-2x^2y+3$

$=xy(x^2+xy-2x)+3=xy[x(x+y)-2x]+3=xy(2x-2x)+3=3$

b) 

$C=x^3+x^2y-2x^2-xy+y^2-3y-x+5$

$=x^2(x+y)-2x^2-xy+y^2-3(y+x)+2x+5$

$=2x^2-2x^2-xy+y^2-6+2x+5$

$=-xy+y^2+2x-1$

$=y(x+y)+2x-1-2xy=2y+2x-1-2x=2(x+y)-1-2x=3-2x$ (không tính cụ thể được giá trị- bạn xem lại đề)

c) 

$D=2x^4+3x^2y^2+y^4+y^2$

$=(x^4+2x^2y^2+y^4)+x^4+x^2y^2+y^2

$=(x^2+y^2)^2+x^4+x^2y^2+y^2$

$=1+x^2(x^2+y^2)+y^2=1+x^2+y^2=1+1=2$

Tui chẳng nghĩ gì về số cúp cả

7 tháng 4 2016

trả lời đi t đag cần gấp lắm

16 tháng 2 2022

Ai 2k9 ko

AH
Akai Haruma
Giáo viên
29 tháng 7 2021

Lời giải:
a. Thay $y=x+1$ vào điều kiện ban đầu có:

$3x+5(x+1)=13$
$8x+5=13$

$8x=8$

$x=1$

$y=x+1=2$
b. Thay $x=y+5$ vô điều kiện đầu thì:

$2(y+5)-3y=4$

$-y+10=4$

$-y=-6$

$y=6$

$x=6+5=11$

c. Thay $y=x-2$ vô điều kiện đầu thì:

$-x+5(x-2)=-6$

$4x-10=-6$

$4x=10+(-6)=4$

$x=1$

$y=x-2=1-2=-1$

a) Ta có: \(\left\{{}\begin{matrix}3x+5y=13\\x+1=y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\x-y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+5y=13\\3x-3y=-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}8y=16\\x+1=y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=y-1=2-1=1\end{matrix}\right.\)

b) Ta có: \(\left\{{}\begin{matrix}2x-3y=4\\x=y+5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\x-y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x-3y=4\\2x-2y=10\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-y=-6\\x=y+5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=6\\x=11\end{matrix}\right.\)

c) Ta có: \(\left\{{}\begin{matrix}-x+5y=-6\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-x+5y=-6\\x-y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4y=-4\\y=x-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-1\\x=y+2=-1+2=1\end{matrix}\right.\)