Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số tự nhiên x biết
a)2^x-15=17
b)(7^x-11)^3=2^5.5^2+200
c)2.3^x=10.3^12+8.27^4
d)(2x-150^5=(2x-15)^3
2\(^x\)- 15 = 17
\(\Rightarrow\)2\(^x\) = 32
\(\Rightarrow\)x = 5
Số số hạng là :
(2x - 2) : 2 + 1 = x - 1 + 1 = x (số)
Tổng là :
(2x + 2).x : 2 = 210
=> (2x2 + 2x) : 2 = 210
=> x2 + x = 210
=> x(x + 1) = 210
=> x(x + 1) = 20.21
=> x = 20
Vậy x = 20
Ta có : \(\frac{x}{2}=\frac{10}{x+1}\)
=> x(x + 1) = 10.2
=> x(x + 1) = 20
=> sai đề
a, \(2.x^x=10.3^{12}+8.27^4\)
\(2.x^x=10.3^{12}+8.3^{12}\)
\(2.x^x=3^{12}.\left(10+8\right)\)
\(2.x^x=3^{12}.18\)
\(2.x^x=3^{12}.2.3^3\)
\(2.x^x=3^{15}.2\)
\(x^x=3^{15}\)( Hình như sai đề )
b,\(3^{2x+2}=9^{x+3}\)
\(3^{2x+2}=3^{2x+3}\)
k,(x + 1) + (x + 2) + (x + 3) + .... + (x + 100) = 5750
=> 100x + (1 + 2 + 3 + ... + 100) = 5750
=> 100x + 5050 = 5750
=> 100x = 5750 - 5050
=> 100x = 700
=> x = 700 : 100
=> x = 7
i,92.4 - 27 = (x + 350) : x + 315
=> 1 + 350 : x + 315 = 341
=> 350 : x = 341 - 316 = 25
-> x = 350: 25 = 14
a: \(\Leftrightarrow\left[\left(3x+14\right):4-3\right]:2=1\)
=>(3x+14):4-3=2
=>(3x+14):4=5
=>3x+14=20
=>3x=6
hay x=2
b: \(\Leftrightarrow\left[\left(x:4+17\right):10+3\cdot16\right]:10=5\)
\(\Leftrightarrow\left(x:4+17\right):10=50-48=2\)
=>x:4+17=20
=>x:4=3
hay x=12
c: \(\Leftrightarrow2\cdot15^2+\left[2\cdot125-\left(2x+4\right)\cdot5\right]:19=453\)
\(\Leftrightarrow250-\left(2x+4\right)\cdot5=\left(453-450\right)\cdot19=57\)
=>5(2x+4)=197
=>2x+4=197/5
=>2x=177/5
hay x=177/10
d: \(\Leftrightarrow\left(19x+50\right):14=5^2-4^2=9\)
=>19x+50=126
=>19x=76
hay x=4
e: \(\Leftrightarrow2\cdot3^x=10\cdot3^{12}+8\cdot3^{12}=18\cdot3^{12}\)
\(\Leftrightarrow3^x=3^2\cdot3^{12}=3^{14}\)
hay x=14
f: \(\Leftrightarrow3\left(x+2\right):7=30\)
=>3(x+2)=210
=>x+2=70
hay x=68
g: \(2480-1570+200-x+5=1010\)
=>1115-x=1010
hay x=105
a) \(2^{2x}.2^4=1024\)
\(2^{2x}=1024:2^4\)
\(2^{2x}=1024:16\)
\(2^{2x}=64\)
\(2^{2x}=2^6\)
\(\Rightarrow2x=6\)
\(\Rightarrow x=3\)
vay \(x=3\)
b) \(2.3^x=10.3^{12}+8.27^4\)
\(2.3^x=2.5.3^{12}+2^3.\left(3^3\right)^4\)
\(2.3^x=2.5.3^{12}+2^3.3^{12}\)
\(2.3^x=2.3^{12}.\left(5+2^2\right)\)
\(2.3^x=2.3^{12}.9\)
\(2.3^x=2.3^{12}.3^2\)
\(2.3^x=2.3^{14}\)
\(\Rightarrow x=14\)
vay \(x=14\)
c) \(5^8.25^x+1=5^{17}\)
\(5^8.\left(5^2\right)^x+1=5^{17}\)
\(5^8.5^{2x}+1=5^{17}\)
\(5^{8+2x}=5^{17}-1\)
e) \(\left(2x-4\right)^5=\left(2x-4\right)^3\)
\(\left(2x-4\right)^5-\left(2x-4\right)^3=0\)
\(\left(2x-4\right)\left[\left(2x-4\right)^2-1\right]=0\)
\(\left(2x-4\right)\left(2x-4-1\right)\left(2x-4+1\right)=0\)
\(\left(2x-4\right)\left(2x-5\right)\left(2x-3\right)=0\)
\(\Rightarrow2x-4=0\)hoac \(\orbr{\begin{cases}2x-5=0\\2x-3=0\end{cases}}\)
\(\Rightarrow2x=4\)hoac \(\orbr{\begin{cases}2x=5\\2x=3\end{cases}}\)
\(\Rightarrow x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)
vay \(x=2\)hoac \(\orbr{\begin{cases}x=\frac{5}{2}\\x=\frac{3}{2}\end{cases}}\)