K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\)                                         \(7^2=49\equiv1\left(mod12\right)\)

             \(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\)                                     \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)

           \(\rightarrow5^{70}\equiv1\left(mod12\right)\)                                                 \(\rightarrow7^{70}\equiv1\left(mod12\right)\)

Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)

Bài 2 :  Ta có : 3012 = 13.231 + 9

Do đó: 3012 đồng dư với 9 (mod13)

=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)

=> \(3012^3\)đồng dư với 1 (mod13)

Hay \(3012^{93}\)đồng dư với 1 (mod13)

=> \(3012^{93}-1\)đồng dư với 0 (mod13)

Hay \(3012^{93}-1⋮13\left(đpcm\right)\)

           

6 tháng 3 2018

Căng thật, lớp 6 đã học đồng dư =((!

301293 : 13

Ta có: 301246 đồng dư với 1 (mod 13)

=> 301292 đồng dư với 1 (mod 13) và 93 đồng dư với 93.

Vậy 301293 : 13 dư 93

P/s: mình không chắc, mới học lớp 6

6 tháng 3 2018

Ta có :

3012 \(\equiv\)9 ( mod13 )

301293 \(\equiv\)993 ( mod13 ) , mà 993 \(\equiv\)1 ( mod13 )

=>  301293 \(\equiv\)1 ( mod13 )

Vậy 301293 : 13 dư 1

25 tháng 6 2016

1) 4x : 17 = 0

=> 4x = 0 x 17

=> 4x = 0

=> x = 0 : 4

=> x = 0

Vậy x = 0

2) Trong 1 phép chia cho 3 số dư có thể bằng 0 ; 1 ; 2

....................................4.............................0 ; 1 ; 2 ; 3

...................................5..............................0 ; 1 ; 2 ; 3 ; 4

3) Dạng tổng quát của số chia hết cho 3 là 3k (k thuộc N)

....................................chia 3 dư 1 là 3k + 1 (k thuộc N)

....................................chia 3 dư 2 là 3k + 2 (k thuộc N)

25 tháng 6 2016

giúp mình di mà mai mình di hoc roi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!