Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Căng thật, lớp 6 đã học đồng dư =((!
301293 : 13
Ta có: 301246 đồng dư với 1 (mod 13)
=> 301292 đồng dư với 1 (mod 13) và 93 đồng dư với 93.
Vậy 301293 : 13 dư 93
P/s: mình không chắc, mới học lớp 6
Ta có :
3012 \(\equiv\)9 ( mod13 )
301293 \(\equiv\)993 ( mod13 ) , mà 993 \(\equiv\)1 ( mod13 )
=> 301293 \(\equiv\)1 ( mod13 )
Vậy 301293 : 13 dư 1
1) 4x : 17 = 0
=> 4x = 0 x 17
=> 4x = 0
=> x = 0 : 4
=> x = 0
Vậy x = 0
2) Trong 1 phép chia cho 3 số dư có thể bằng 0 ; 1 ; 2
....................................4.............................0 ; 1 ; 2 ; 3
...................................5..............................0 ; 1 ; 2 ; 3 ; 4
3) Dạng tổng quát của số chia hết cho 3 là 3k (k thuộc N)
....................................chia 3 dư 1 là 3k + 1 (k thuộc N)
....................................chia 3 dư 2 là 3k + 2 (k thuộc N)
giúp mình di mà mai mình di hoc roi !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1, Dễ thấy : \(5^2=25\equiv1\left(mod12\right)\) \(7^2=49\equiv1\left(mod12\right)\)
\(\rightarrow\left(5^2\right)^{35}\equiv1^{35}\left(mod12\right)\) \(\rightarrow\left(7^2\right)^{35}\equiv1^{35}\left(mod12\right)\)
\(\rightarrow5^{70}\equiv1\left(mod12\right)\) \(\rightarrow7^{70}\equiv1\left(mod12\right)\)
Vậy \(5^{70}:12\left(dư1\right)\) và \(7^{70}:12\left(dư1\right)\)Vậy \(\left(5^{70}+7^{70}\right):12\left(dư2\right)\)
Bài 2 : Ta có : 3012 = 13.231 + 9
Do đó: 3012 đồng dư với 9 (mod13)
=> \(3012^3\)đồng dư với \(9^3\left(mod13\right)\). Mà \(9^3=729\)đồng dư với 1 (mod13)
=> \(3012^3\)đồng dư với 1 (mod13)
Hay \(3012^{93}\)đồng dư với 1 (mod13)
=> \(3012^{93}-1\)đồng dư với 0 (mod13)
Hay \(3012^{93}-1⋮13\left(đpcm\right)\)
Bếu hít