Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(2xy+2x-y=8\)
\(\Rightarrow\ 2x\left(y+1\right)-\left(y+1\right)=7\)
\(\Leftrightarrow\left(2x-1\right)\left(y+1\right)=7\)
\(\Rightarrow\left[\begin{matrix}\begin{cases}2x-1=-7\\y+1=-1\end{cases}\\\begin{cases}2x-1=-1\\y+1=-7\end{cases}\end{matrix}\right.\left[\begin{matrix}\begin{cases}2x-1=7\\y+1=1\end{cases}\\\begin{cases}2x-1=1\\y+1=7\end{cases}\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=4\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=1\\y=6\end{cases}\\\left[\begin{matrix}\begin{cases}x=-3\\y=-2\end{cases}\\\begin{cases}x=0\\y=-8\end{cases}\end{matrix}\right.\end{matrix}\right.\end{matrix}\right.\)
c)\(x^2+xy+x+y=2\)
\(\Leftrightarrow x\left(x+1\right)+y\left(x+1\right)=2\)
\(\Leftrightarrow\left(x+y\right)\left(x+1\right)=2\)
\(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x+y=2\\x+1=1\end{cases}\\\begin{cases}x+y=1\\x+1=2\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x+y=-2\\x+1=-1\end{cases}\\\begin{cases}x+y=-1\\x+1=-2\end{cases}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[\begin{matrix}\left[\begin{matrix}\begin{cases}x=0\\y=2\end{cases}\\\begin{cases}x=1\\y=0\end{cases}\end{matrix}\right.\\\left[\begin{matrix}\begin{cases}x=-2\\y=0\end{cases}\\\begin{cases}x=-3\\y=2\end{cases}\end{matrix}\right.\end{matrix}\right.\)
Bài tập này bạn lên mạng tìm kiếm có thể có chứ giải thì dái lắm
Cố gắng nha
a,5mũ 36=(5mũ3)mũ12=125 mũ12
11^24=(11^2)12=121^12
vì 121<125 nên 5^36>11^24
Ta có:
A = 1 + 3 + 32 + 33 + ... + 36
3A = 3 + 32 + 33 + ... + 37
3A - A = (3 + 32 + 33 + ... + 37) - 1 + 3 + 32 + 33 + ... + 36
2A = 37 - 1
Ta lại có:
B = (37 - 1) : 2
2B = 37 - 1
Vì 2A = 2b nên A = B.
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!