K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

ta có:1/2!<1

2/3!<1

......

......

2015/2016!<1

=>A=1/2!+2/3!+3/4!+......+2015/2016! luôn luôn <1

16 tháng 4 2018

Ko biét làm

30 tháng 1 2016

câu 1: tích 1.2.3.4...2015 hơn tích 1.2.3.4...2014 1 thừa số là thừa số 2014

=[1.2.3.4...(2014.2014)]-1.2.3.4...20142

=> tích đó =0

câu 2:

2016x +(1+3+5+ …+2015) = 2016 (*)
Tổng : 1+3+5+ …+2015 có: (2015-1):2+1= 1008 số hạng
= > Tổng : 1+3+5+ …+2015 có: 504 cặp số
Từ (*) = > 1009x + (2015+1).504 = 2016
= > 1009x = 2016.(1-504) = > x = (-1006)



30 tháng 1 2016

câu 2 sai vì tui nhìn tưởng đề là x+(x+1)+(x+3)+(x+5)+...+(x+2015)=2016

14 tháng 5 2017

\(E=\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 3E=1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\\ 3E+E=\left(1-\dfrac{2}{3}+\dfrac{3}{3^2}-\dfrac{4}{3^3}+...+\dfrac{2015}{3^{2014}}-\dfrac{2016}{3^{2015}}\right)+\left(\dfrac{1}{3}-\dfrac{2}{3^2}+\dfrac{3}{3^3}-\dfrac{4}{3^4}+...+\dfrac{2015}{3^{2015}}-\dfrac{2016}{3^{2016}}\right)\\ 4E=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}-\dfrac{2016}{3^{2016}}\\ 4E< 1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\left(1\right)\)

Gọi \(D=1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...-\dfrac{1}{3^{2015}}\)

\(3D=3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}\\ 3D+D=\left(3-1+\dfrac{1}{3}-\dfrac{1}{3^2}+...+\dfrac{1}{3^{2013}}-\dfrac{1}{3^{2014}}\right)+\left(1-\dfrac{1}{3}+\dfrac{1}{3^2}-\dfrac{1}{3^3}+...+\dfrac{1}{3^{2014}}-\dfrac{1}{3^{2015}}\right)\\ 4D=3-\dfrac{1}{3^{2015}}< 3\\ \Rightarrow D< \dfrac{3}{4}\left(2\right)\)

Từ (1) và (2) ta có:

\(4E< \dfrac{3}{4}\\ \Rightarrow E< \dfrac{3}{16}\)

14 tháng 5 2017

thanks bn nhìu

7 tháng 5 2019

Bài 3

\(\frac{n+6}{n+1}=\frac{n+1+5}{n+1}=\frac{n+1}{n+1}+\frac{5}{n+1}\)

\(=1+\frac{5}{n+1}\)

Vậy để \(\frac{n+6}{n+1}\in Z\Rightarrow1+\frac{5}{n+1}\in Z\)

Hay \(\frac{5}{n+1}\in Z\)\(\Rightarrow n+1\inƯ_5\)

 \(Ư_5=\left\{1;-1;5;-5\right\}\)

\(n+1=1\Rightarrow n=0\)

\(n+1=-1\Rightarrow n=-2\)

\(n+1=5\Rightarrow n=4\)

\(n+1=-5\Rightarrow n=-6\)

Vậy \(n\in\left\{0;-2;4;-6\right\}\)

Bài 2:

\(\frac{10}{3.8}+\frac{10}{8.13}+\frac{10}{13.18}+\frac{10}{18.23}+\frac{10}{23.28}=2\left(\frac{1}{3}-\frac{1}{8}+\frac{1}{8}-\frac{1}{13}+...+\frac{1}{23}-\frac{1}{28}\right)\\ =2\left(\frac{1}{3}-\frac{1}{28}\right)\\ =2.\frac{56}{84}\\ =\frac{56}{42}=\frac{28}{21}\)

27 tháng 11 2020

khó quá 

7 tháng 5 2017

2.

Ta có : \(A=\frac{n+5}{n+2}=\frac{n+2+3}{n+2}=1+\frac{3}{n+2}\)

để A là số nguyên thì \(\frac{3}{n+2}\)là số nguyên

\(\Rightarrow3⋮n+2\)

\(\Rightarrow\)n + 2 \(\in\)Ư ( 3 ) = { 1 ; -1 ; 3 ; -3 }

Lập bảng ta có :

n+21-13-3
n-1-31-5

Vậy n \(\in\){ -1 ; -3 ; 1 ; -5 }

3. 

\(\frac{4}{3}+\frac{10}{9}+\frac{28}{27}+...+\frac{3^{98}+1}{3^{98}}\)

\(=\left(1+\frac{1}{3}\right)+\left(1+\frac{1}{9}\right)+\left(1+\frac{1}{27}\right)+...+\left(1+\frac{1}{3^{98}}\right)\)

\(=\left(1+1+1+...+1\right)+\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+...+\frac{1}{3^{98}}\right)\)

\(=97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)\)

gọi \(B=\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\)( 1 )

\(3B=1+\frac{1}{3^1}+\frac{1}{3^2}+...+\frac{1}{3^{97}}\)( 2 )

Lấy ( 2 ) trừ ( 1 ) ta được :

\(2B=1-\frac{1}{3^{98}}< 1\)

\(\Rightarrow B=\frac{1-\frac{1}{3^{98}}}{2}< \frac{1}{2}< 1\)

\(\Rightarrow97+\left(\frac{1}{3^1}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{98}}\right)< 100\)

4.

đặt \(A=\frac{5^2}{1.6}+\frac{5^2}{6.11}+\frac{5^2}{11.16}+...+\frac{5^2}{26.31}\)

\(5A=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+...+\frac{5}{26.31}\)

\(5A=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+\frac{1}{11}-\frac{1}{16}+...+\frac{1}{26}-\frac{1}{31}\)

\(5A=1-\frac{1}{31}< 1\)

\(\Rightarrow A=\frac{1-\frac{1}{31}}{5}< \frac{1}{5}< 1\)

6 tháng 5 2017

Ta có : \(2A=2.\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)

            \(2A=2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\)

\(2A-A=\left(2+2^2+2^3+2^4+...+2^{2016}+2^{2017}\right)-\left(1+2+2^2+2^3+...+2^{2015}+2^{2016}\right)\)

\(A=2+2^3+2^4+2^5+...+2^{2016}+2^{2017}-1-2-2^2-2^3-...-2^{2015}-2^{2016}\)

\(A=2^{2017}-1\)

14 tháng 3 2022

Ta có : \(\dfrac{1}{2^2}\)<\(\dfrac{1}{1.2}\)\(\dfrac{1}{3^2}\)<\(\dfrac{1}{2.3}\);.....;\(\dfrac{1}{2016^2}\)<\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\)\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{2015.2016}\)

⇒ A = \(\dfrac{1}{2^2}\)+\(\dfrac{1}{3^2}\)+...+\(\dfrac{1}{2016^2}\) < 1 - \(\dfrac{1}{2016}\)\(\dfrac{2015}{2016}\) (ĐCPCM)