Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=100\)
hay BC=10cm
Xét ΔABC có BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
hay \(\dfrac{AD}{6}=\dfrac{CD}{10}\)
mà AD+CD=8
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{6}=\dfrac{CD}{10}=\dfrac{AD+CD}{6+10}=\dfrac{8}{16}=\dfrac{1}{2}\)
Do đó: AD=3cm; CD=5cm
b: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
\(\widehat{ABC}\) chung
Do đó: ΔABC\(\sim\)ΔHBA
Suy ra: \(\dfrac{BA}{BH}=\dfrac{BC}{BA}\)
hay \(AB^2=BH\cdot BC\)
c: Xét ΔABI và ΔCBD có
\(\widehat{ABI}=\widehat{CBD}\)
\(\widehat{BAI}=\widehat{BCD}\left(=90^0-\widehat{ABH}\right)\)
Do đó: ΔABI\(\sim\)ΔCBD
d: Xét ΔBHA có BI là đường phân giác ứng với cạnh AH
nên \(\dfrac{IH}{IA}=\dfrac{BH}{BA}\left(1\right)\)
Xét ΔBAC có BD là đường phân giác ứng với cạnh AC
nên \(\dfrac{AD}{DC}=\dfrac{AB}{BC}\left(2\right)\)
Ta có: \(AB^2=BH\cdot BC\)
nên \(\dfrac{BH}{BA}=\dfrac{AB}{BC}\left(3\right)\)
Từ \(\left(1\right),\left(2\right),\left(3\right)\) suy ra \(\dfrac{IH}{IA}=\dfrac{AD}{DC}\)
a: Xét ΔAHB vuông tại H và ΔCHA vuôg tại H có
góc HAB=góc HCA
=>ΔAHB đồng dạng với ΔCHA
MH/MC=AH/AC=HB/AB
b: Xét ΔABE và ΔCMA có
góc BAE=góc MCA
góc ABE=góc CMA
=>ΔABE đồng dạng vơi ΔCMA
=>góc AEB=góc CAM
=>góc BEA=góc EAM
=>AM//BE
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc ACB chung
Do dó ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD/CE=CA/CB
=>ΔCDA đồng dạng với ΔCEB
=>EB/DA=BC/AC
mà BC/AC=AC/CH
nên EB/DA=AC/CH=BA/HA
=>BE/AD=BA/HA
=>\(BE=\dfrac{AB}{AH}\cdot AD=\dfrac{AB}{AH}\cdot\sqrt{AH^2+HD^2}\)
\(=\dfrac{AB}{AH}\cdot\sqrt{AH^2+AH^2}=AB\sqrt{2}\)
b: Xét ΔABE vuông tại A có sin AEB=AB/BE=1/căn 2
nên góc AEB=45 độ
=>ΔABE vuông cân tại A
=>AM vuông góc với BE
BM*BE=BA^2
BH*BC=BA^2
Do đó: BM*BE=BH/BC
=>BM/BC=BH/BE
=>ΔBMH đồng dạng với ΔBCE