Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét \(\Delta DBA\) và \(\Delta ABC\) có :
Góc B chung
Góc ADB = Góc BAC ( =90 o )
\(\Rightarrow\Delta DBA\sim\Delta ABC\left(g-g\right)\)
b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )
=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Lại có : \(\dfrac{AD}{AC}=\dfrac{AB}{BC}\left(\Delta DBA\sim\Delta ABC\right)\)
Suy ra : \(AD=\dfrac{AC.AB}{BC}=\dfrac{6.8}{10}=4,8\left(cm\right)\)
c, Ta có : BF là tia phân giác của góc B
=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\left(1\right)\)
BE là tia phân giác của góc B
=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\left(2\right)\)
Mà \(\dfrac{BD}{AB}=\dfrac{AB}{BC}\left(\Delta DBA\sim\Delta ABC\right)\left(3\right)\)
Từ (1), (2) và (3) suy ra :
\(\dfrac{FD}{FA}=\dfrac{EA}{EC}\Rightarrow FD.EC=EA.FA\)
a, Xét ΔDBA và ΔABC có :
Góc B chung
Góc ADB = Góc BAC ( =90 o )
⇒ΔDBA∼ΔABC(g−g)
b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )
=> BC = AB2+AC2=62+82=10
Lại có : ADAC=ABBC(ΔDBA∼ΔABC)
Suy ra : AD=AC.ABBC=6.810=4,8(cm)
c, Ta có : BF là tia phân giác của góc B
=> FDFA=BDAB(1)
BE là tia phân giác của góc B
=> EAEC=ABBC(2)
Mà BDAB=ABBC(ΔDBA∼ΔABC)(3)
Từ (1), (2) và (3) suy ra :
`a,15x-8x=9`
`<=>7x=9`
`<=>x=9/7`
`b,(x+3)(x-5)=0`
`<=>` $\left[ \begin{array}{l}x+3=0\\x-5=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=5\\x=-3\end{array} \right.$
Vậy `S={-3,5}`
Bài 2:
a) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
a) Áp dụng định lí Py-ta-go vào ΔABC vuông tại A ta có:
\(BC^{ }=\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=\sqrt{100}=10\left(cm\right)\)
Xét ΔABC có BD là p/g \(\widehat{ABC}\),theo t/c ta có:
\(\dfrac{AB}{BC}=\dfrac{AD}{DC}\Rightarrow\dfrac{DC}{BC}=\dfrac{AD}{AB}hay\dfrac{DC}{10}=\dfrac{AD}{6}\)
Theo tính chất của dãy tỉ số bằng nhau ta có:
\(\dfrac{DC}{10}=\dfrac{AD}{6}=\dfrac{DC+AD}{10+6}=\dfrac{AC}{16}=\dfrac{8}{16}=\dfrac{1}{2}\)
=>\(\left\{{}\begin{matrix}DC=10.\dfrac{1}{2}=5\left(cm\right)\\AD=6.\dfrac{1}{2}=3\left(cm\right)\end{matrix}\right.\)
b) Ta có: \(\widehat{ABD}+\widehat{BDA}=\widehat{BAD}=90^o\)
\(\widehat{DBH}+\widehat{BIH}=\widehat{BHI}=90^o\)
Mà \(\widehat{ABD}=\widehat{DBH}\)(DB là p/g \(\widehat{ABC}\)) ⇒\(\widehat{BDA}=\widehat{BIH}\)
Lại có \(\widehat{AID}=\widehat{BIH}\)( 2 góc đối đỉnh)
⇒\(\widehat{BDA}=\widehat{AID}\)
⇒ΔAID cân tại A
c) Xét ΔABD và ΔHBI có:
\(\widehat{BAD}=\widehat{BHI}=90^o\left(gt\right)\)
\(\widehat{ABD}=\widehat{IBH}\)(BD là p/g \(\widehat{ABC}\))
⇒ΔABD ~ ΔHBI(g-g)
⇒\(\dfrac{AD}{IH}=\dfrac{BD}{BI}\)⇒\(\dfrac{AD}{BD}=\dfrac{IH}{BI}\)
Mà AD=AI(ΔAID cân tại A)⇒\(\dfrac{AI}{BD}=\dfrac{IH}{BI}\Rightarrow AI.BI=BD.IH\left(đpcm\right)\)
a/ \(BD\) là đường phân giác \(\widehat{BAC}\)
\(\to\dfrac{DA}{DC}=\dfrac{BA}{BC}\) hay \(\dfrac{DA}{DC}=\dfrac{6}{10}=\dfrac{3}{5}\)
\(\to\dfrac{DA}{3}=\dfrac{DC}{5}=\dfrac{DA+DC}{3+5}=\dfrac{AC}{8}=\dfrac{8}{8}=1\)
\(\to\begin{cases}DA=3\\DC=5\end{cases}\)
b/ \(S_{\Delta ABC}=\dfrac{1}{2}.AB.AC=\dfrac{1}{2}.AH.BC\)
\(\to AB.AC=AH.BC\)
\(\to \dfrac{AB.AC}{BC}=AH=\dfrac{6.8}{10}=3,2(cm)\)
b) Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot10=6\cdot8=48\)
hay AH=4,8(cm)
Vậy: AH=4,8cm
a/ Xét tg HBA và tg ABC, có:
góc BHA = góc BAC = 90 độ
góc B chung
Suyra: tg HBA đồng dạng với tg ABC (g-g)
b/ Ta có tg ABC vuông tại A:
\(BC^2=AC^2+AB^2\)
\(BC^2=8^2+6^2=100\)
\(\Rightarrow BC=\sqrt{100}=10\)(cm)
Ta có: \(\frac{HA}{AC}=\frac{BA}{BC}\)(tg HBA đồng dạng với tg ABC)
\(\Rightarrow\frac{HA}{8}=\frac{6}{10}\)
\(\Rightarrow HA=\frac{8.6}{10}=4,8\left(cm\right)\)
a,Xét tam giác BAC và QEC có:
Góc ABC= Góc CQE
Góc C chung
Góc CQE= Góc CAB ( Vì Góc A + Góc B + Góc C = Góc CQE + Góc C + Góc QEC )
=> BAC đồng dạng với QEC(g-g)(đpcm)
b,
Theo định lý Py-ta-go ta có:
Trong Tam giác ABC vuông tại B
Ta có:
AB^2+BC^2=AC^2
=> AC^2=100
=> AC = 10
a, Xét ΔDBAΔDBA và ΔABCΔABC có :
Góc B chung
Góc ADB = Góc BAC ( =90 o )
⇒ΔDBA=ΔABC(g−g)
b, Ta có : AB2 + AC2 =BC2 ( định lý Py -ta-go )
=> BC = \(\sqrt{AB^2+AC^2}=\sqrt{6^2+8^2}=10\)
Lại có :\(\dfrac{AD}{AC}=\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)
Suy ra : AD=\(\dfrac{AC.AB}{BC}\)=\(\dfrac{6.8}{10}\)=4,8(cm)
c, Ta có : BF là tia phân giác của góc B
=> \(\dfrac{FD}{FA}=\dfrac{BD}{AB}\)(1)
BE là tia phân giác của góc B
=> \(\dfrac{EA}{EC}=\dfrac{AB}{BC}\)(2)
Mà \(\dfrac{DB}{AB}\)=\(\dfrac{AB}{BC}\)(ΔDBA∼ΔABC)(3)
Từ (1), (2) và (3) suy ra :
\(\dfrac{FD}{FA}\)=\(\dfrac{EA}{EC}\)⇒FD.EC=EA.FA
Bạn bị nhầm ở câu tính AD.
\(\dfrac{AD}{DC}=\dfrac{AB}{BC}\Rightarrow\dfrac{AD}{AC}=\dfrac{AB}{AB+BC}=\dfrac{6}{6+10}=\dfrac{3}{8}\Rightarrow AD=\dfrac{3}{8}AC=3\)