K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 7 2016

ghi câu hỏi rõ bạn ơi

1 tháng 7 2016

Bài 1 : Tính nhanh

a) 16.(382)38(161)16.(38−2)−38(16−1)

b) (41).(59+2)+59(412)(−41).(59+2)+59(41−2)

Bài 2 :

Tìm các số x ; y ; x biết rằng :

 

x + y = 2 ;  y + z = 3 ;  z + x = -5

Bài 3 : Tìm x ; y  Z biết rằng :

( y + 1 ) . xy - 1 ) = 3

14 tháng 8 2016

Ta có

\(\begin{cases}\left|x-\frac{1}{2}\right|\ge0\\\left|y+\frac{3}{2}\right|\ge0\\\left|x+y-z-\frac{1}{2}\right|\ge0\end{cases}\)

Maf \(\left|x-\frac{1}{2}\right|+\left|y+\frac{3}{2}\right|+\left|x+y-z-\frac{1}{2}\right|=0\)

\(\Rightarrow\begin{cases}x-\frac{1}{2}=0\\y+\frac{3}{2}=0\\x+y-z-\frac{1}{2}=0\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\x+y-z=\frac{1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\\frac{1}{2}-\frac{3}{2}-z=\frac{1}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\-z=\frac{3}{2}\end{cases}\)

\(\Rightarrow\begin{cases}x=\frac{1}{2}\\y=-\frac{3}{2}\\z=-\frac{3}{2}\end{cases}\)

9 tháng 7 2015

thế lớp mấy mà ko làm đc

AH
Akai Haruma
Giáo viên
15 tháng 1 2023

Lời giải:

1. Ta thấy: 
$(1-x)^2\geq 0; (3-y)^2\geq 0; (y^2-x-z)^2\geq 0$ với mọi $x,y,z$

Do đó để tổng của chúng bằng $0$ thì $(1-x)^2=(3-y)^2=(y^2-x-z)^2=0$

$\Rightarrow x=1; y=3; z=y^2-x=3^2-1=8$

2.

Bạn xem có viết lộn dấu bình phương ở cụm ( ) thứ nhất vào bên trong không vậy>

23 tháng 5 2017

a, [x+1]2 + [y+5]2 = 16

Theo đề, ta có: 0 \(\le\)[x+1]\(\le\)16; 0\(\le\)[y+5]2 \(\le\)16

Dễ dàng nhận thấy [x+1]2 và [y+5]2 là hai số chính phương, mà từ 0 - 16 chỉ có hai số chính phương 0 và 16 là có tổng là 16

=> Có hai trường hợp:

\(\hept{\begin{cases}\left[x+1\right]^2=0\\\left[y+5\right]^2=16\end{cases}\Rightarrow}\hept{\begin{cases}x+1=0\\\hept{\begin{cases}y+5=4\\y+5=-4\end{cases}}\end{cases}\Rightarrow\hept{\begin{cases}x=-1\\y=-1\end{cases};}\hept{\begin{cases}x=-1\\y=-9\sqrt[]{}\sqrt[]{}\end{cases}}}\)

18 tháng 3 2017

Ta có :  \(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

mà \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-y^2+z=0\\y-2=0\\z+3=0\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x=y^2-z=2^2-\left(-3\right)=7\\y=2\\z=-3\end{cases}}\)

18 tháng 3 2017

\(\left(x-y^2+z\right)^2+\left(y-2\right)^2+\left(z+3\right)^2=0\)

Do \(\hept{\begin{cases}\left(x-y^2+z\right)^2\ge0\\\left(y-2\right)^2\ge0\\\left(z+3\right)^2\ge0\end{cases}\Rightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\\left(y-2\right)^2=0\\\left(z+3\right)^2=0\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x-y^2+z\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}\left[x-2^2+\left(-3\right)\right]^2=0\\y=2\\z=-3\end{cases}}}\)

\(\Leftrightarrow\hept{\begin{cases}\left(x+1\right)^2=0\\y=2\\z=-3\end{cases}\Leftrightarrow\hept{\begin{cases}x=-1\\y=2\\z=-3\end{cases}}}\)

Vậy ...

\(a,\left(x+3\right)\left(y+2\right)=1\)

=> x+3 và y+2 thuộc UC(1)={1; -1}

x+31-1
x-2-4
y+21-1
y-1-3

Vậy x=-2; y=-4

       x=-1; y=-4

Câu sau tương tự

13 tháng 8 2019

\(a,\left(x+3\right)\left(y+2\right)=1\)

Th1 : \(\hept{\begin{cases}x+3=1\\y+2=1\end{cases}\Rightarrow\hept{\begin{cases}x=-2\\y=-1\end{cases}}}\)

Th2 : \(\hept{\begin{cases}x+3=-1\\y+2=-1\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\y=-3\end{cases}}}\)

KL : \(\left\{\left(x=-2;y=-1\right);\left(x=-4;y=-3\right)\right\}\)

\(d,3x+4y-xy=16\)

\(=3x-xy+4y-12=4\)

\(\Rightarrow-x\left(y-3\right)+4\left(y-3\right)=4\)

\(\Rightarrow\left(y-3\right)\left(4-x\right)=4\)

Chia các trường hợp như câu a của chị ra em nhé

9 tháng 1 2018

Câu 1: |x + 2| \(\le\)1 => |x + 2| = 0

=> x + 2 = 0

x = 0 - 2

x = -2

Câu 3: |x| + |y| + |z| = 0

Vì giá trị tuyệt đối phải là số lớn hơn hoặc bằng 0

=> |x| = 0, |y| = 0, |z| = 0

=> x = 0, y = 0, z = 0