Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Số phân tấm vải thứ nhất còn lại là : 1 -1/7 = 6/7 tấm
Số phần tấm vải thứ hai còn lại là : 1-2/11 = 9/11 tấm
số phần tấm vải thứ 3 còn lại là : 1 - 1/3 = 2/3 tấm
Vì sau khi bán thì ba tấm còn lại băng nhau nên ta có:
6/7 tấm thứ 1 = 9/11 tấm thứ 2 = 2/3 tấm thứ 3 (quy đồng tử)
Ta có: 18/21 tấm thứ 1 = 18/22 tấm thứ 2 = 18/27 tấm thứ 3
ta có số đồ:
tấm thứ 1: 21 phần
tấm thứ 2: 22 phần
tấm thứ 3 : 27 phần
Đến đây đưa về bài toán tổng tỉ
tổng số phần bằng nhau là: 21 + 22 + 27 = 70 phần
Số m vải tấm thứ nhất là: 210 . 21/70 = 63 (m)
Số m vải tấm thứ 2 là: 210 .22/70 = 66 (m)
số m vải tấm thứ 3 là 210 . 27/70 = 81 (m)
Gọi số mét vải của 3 tấm vải lần lượt là a;b;c (a;b;c > 0)
Theo bài ra ta có:
a + b + c = 210 và: \(a-\frac{1}{7}a=b-\frac{2}{11}b=c-\frac{1}{3}c\)
\(\Rightarrow\frac{6}{7}a=\frac{9}{11}b=\frac{2}{3}c\Rightarrow\frac{6a}{7}=\frac{9b}{11}=\frac{2c}{3}\)
\(\Rightarrow\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}\)
Áp dụng tính chất dãy tỉ số bằng nhau và a+b+c=210; ta có:
\(\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}=\frac{18a+18b+18c}{21+22+27}=\frac{18\left(a+b+c\right)}{70}=\frac{18\times210}{70}=54\)
Từ \(\frac{18a}{21}=54\Rightarrow a=54\times21\div18=63\left(m\right)\)
\(\frac{18b}{22}=54\Rightarrow b=54\times22\div18=66\left(m\right)\)
\(\frac{18c}{27}=54\Rightarrow c=54\times27\div18=81\left(m\right)\)
Vậy tấm thứ nhất dài 63 m
tấm thứ hai dài 66 m
tấm thứ ba dài 81 m
Gọi lần lượt là độ dài của ba tấm vải ban đầu (0 < x;y;z < 420)
Sau khi bán 1 7 tấm vải thứ nhất thì độ dài của tấm vải thứ nhất còn
x - 1 7 x = 6 x 7 (m)
Sau khi bán 2 11 tấm vải thứ nhất thì độ dài của tấm vải thứ hai còn
y − 2 11 y = 9 y 11
Sau khi bán 60 ° tấm vải thứ nhất thì độ dài của tấm vải thứ ba còn
z − 1 3 z = 2 z 3
Sau khi bán thì độ dài còn lại của ba tấm vải bằng nhau nên ta có:
6 x 7 = 9 y 11 = 2 z 3
⇒ 6 y 7.18 = 9 y 11.18 = 2 z 3.18 ⇒ x 21 = y 22 = z 27
Tổng độ dài ba tấm vải ban đầu là 420 nên x + y + z = 420
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
x 21 = y 22 = z 27 = x + y + z 21 + 22 + 27 = 420 70 = 6
Suy ra y 22 =6 nên y = 6.22 = 132 (TM)
Vậy tấm vải thứ hai dài 132 mét
Đáp án cần chọn là D
gọi các tấm vải tứ tự là x,y,z
khi bán đi mỗi tấm còn lại ta có dãy số bằng nhau
x/2=y/3=z/4 => x/2+y/3+z/4 = 108/9 = 12
x= 12.2=24m
y=12.3=36m
z=12.4=48m
- Gọi chiều dài ba tấm vải lần lượt là a;b;c(m; a;b;c\(\in\) N*)
- Theo đề bài ta có:
+ Sau khi bán \(\frac{1}{2}\)tấm thứ nhất thì tấm thứ nhất còn lại: \(a-a.\frac{1}{2}=a.\frac{1}{2}=\frac{a}{2}\)(1)
+ Sau khi bán \(\frac{2}{3}\)tấm thứ hai thì tấm thứ hai còn lại: \(b-b.\frac{2}{3}=b.\frac{1}{3}=\frac{b}{3}\)(2)
+ Sau khi bán \(\frac{3}{4}\)tấm vải thứ ba thì tấm thứ ba còn lại: \(c-c.\frac{3}{4}=c.\frac{1}{4}=\frac{c}{4}\)(3)
Mà lúc đó số mét vải còn lại ở ba tấm bằng nhau \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{4}\)
+ Ba tấm vải dài tổng cộng 108m \(\Rightarrow\) \(a+b+c=108\left(m\right)\)
- Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow a=12.2=24\left(m\right)\) ; \(b=12.3=36\left(m\right)\); \(c=12.4=48\left(m\right)\)
Vậy
Gọi chiều dài 3 tấm vải lần lượt là a;b;c (m) (a;b;c > 0)
Vì tổng chiều dài 3 tấm vải là 108 m nên a + b + c = 108
Do sau khi bán \(\frac{1}{2}\) tấm thứ nhất, \(\frac{2}{3}\) tấm thứ hai và \(\frac{3}{4}\) tấm thứ 3 thì số m vải còn lại ở 3 tấm bằng nhau nên
\(a-\frac{1}{2}a=b-\frac{2}{3}b=c-\frac{3}{4}c\)
\(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{b}{4}\)
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{4}=\frac{a+b+c}{2+3+4}=\frac{108}{9}=12\)
\(\Rightarrow\begin{cases}a=12.2=24\\b=12.3=36\\c=12.4=48\end{cases}\)
Vậy tấm vải thứ nhất dài 24 m, tấm vải thứ 2 dài 36 m, tấm vải thứ 3 dài 48 m
Gọi a, b, c lần lượt là chiều dài của tấm vải thứ nhất, tấm vải thứ hai và tấm vải thứ ba
Theo bài ra ta có: \(a-\frac{1}{7}a=b-\frac{2}{11}b=c-\frac{1}{3}c\)
\(\Rightarrow\frac{6}{7}a=\frac{9}{11}b=\frac{2}{3}c\)
\(\Rightarrow\frac{a}{\frac{7}{6}}=\frac{b}{\frac{11}{9}}=\frac{c}{\frac{3}{2}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{\frac{7}{6}}=\frac{b}{\frac{11}{9}}=\frac{c}{\frac{3}{2}}=\frac{a+b+c}{\frac{7}{6}+\frac{11}{9}+\frac{3}{2}}=\frac{210}{\frac{35}{9}}=54\)
\(\Rightarrow\frac{a}{\frac{7}{6}}=\frac{b}{\frac{11}{9}}=\frac{c}{\frac{3}{2}}=54\Rightarrow\hept{\begin{cases}a=63\\b=66\\c=81\end{cases}}\)
Vậy ...
Gọi độ dài 3 tấm vải lần lượt là : a; b; c ( a,b,c > 0 )
Theo bài ra ta có : a - \(\frac{1}{7}a\)= b - \(\frac{2}{11}b\)= c - \(\frac{1}{3}c\)Hay \(\frac{6a}{7}=\frac{9b}{11}=\frac{2c}{3}\)và a + b + c = 210
\(\frac{6a}{7}=\frac{9b}{11}=\frac{2c}{3}=\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{18a}{21}=\frac{18b}{22}=\frac{18c}{27}=\frac{18.\left(a+b+c\right)}{21+22+27}=\frac{18.210}{70}=54\)
=> a = 63 ( m ) ; b = 66 ( m ) ; c = 81 ( m )
Vậy ...
Ba tấm vải dài tổng cọng 210m.Sau khi bán 1/7 tấm vải thứ nhất,2/11 tấm vải thứ 2 và 1/3 tấm vải thứ 3 thi sso vải còn lại bằng nhau.Hỏi lúc đầu mỗi tấm vải dài mấy m?