Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 44444444444444444444444444444444444444444444444444444444444444444444444444444444444
Đặt 111....1<n chữ số 1> là k
Ta có: 111......1<2n chữ số 1>=k.10n + k
Vì :10n = 9k + 1
11......1<2n chữ số 1>= k.<9k + 1> +k = 9k2+k+k = 9k2 + 2k
Ta có 444........4<n chữ số 4>=4k
Vậy a+b+1= 9k2 +2k+4k+1 = <3k>2 +2.3k.1 +12 = <3k +1>2
Vậy a+b+1 là một số chính phương
\(a+b=1111....11\left(\text{2n chữ số 1}\right)+44.....444\left(\text{n chữ số 4}\right)=111...111\left(\text{n chữ số 1}\right).\left(1000...05\left(\text{n-1 chữ số 0}\right)\right)=333.....33\left(\text{n chữ số 3}\right).3333....35\left(\text{n-1 chữ số 3}\right)=\left(333..334\left(\text{n-1 chữ số 3}\right)\right)^2-1\Rightarrow a+b+1=333...334^2\text{ là số chính phương đpcm}\)
ta có: A=11..1 + 44..4+1
2n c/s 1 n c/s 4
biến đổi \(A=111..1+4.11...1+1\)
\(A=\frac{10^{2n}-1}{9}+4.\frac{10^n-1}{9}+1=\frac{10^{2n}+4.10^n+4}{9}\)
\(A=\frac{\left(10^n+2\right)^2}{9}=\frac{\left(10..02\right)^2}{9}=\left(3...34\right)^2\) luôn là 1 số chính phương(đpcm)
bn tự bổ sung thêm những chỗ mk viết thiếu'... chữ số' nhé
n-1 c/s 3