K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

9 tháng 7 2015

Ta chia thành hai vế (1) và (2)

Số số hạng (1) là :

( 101 - 1 ) : 1 + 1 = 101  ( số )

Tổng (1) là :

( 101 + 1 ) x 101 : 2 = 5151

Tự tính tiếp

13 tháng 12 2015

\(B=\frac{2601}{26}\)

9 tháng 7 2015

Ta chia thành hai vế (1) và (2)

Số số hạng (1) là :

( 101 - 1 ) : 1 + 1 = 101  ( số )

Tổng (1) là :

( 101 + 1 ) x 101 : 2 = 5151

Tự tính tiếp

12 tháng 8 2017

Có tất cả số số hạng là:

( 101 - 1 ) : 1 + 1 = 101 ( số )

Tổng của các số đó là:

( 101 + 1 ) x 101 : 2 = 5151

Đáp số: 5151

4 tháng 8 2016

\(A=\frac{101+100+99+98+....+3+2+1}{101-100+99-98+...+3-2+1}\)

\(A=\frac{1+2+3+...+98+99+100+101}{\left(101-100\right)+\left(99-98\right)+...+\left(3-2\right)+1}\)có 50 cặp số ở dưới mẫu

\(A=\frac{\frac{101.102}{2}}{50.1+1}\)

\(A=\frac{5151}{51}\)

\(A=101\)

4 tháng 8 2016

Đặt A = 101+100+....+3+2+1

=> Số số hạng của A là: (101-1)+1 = 101 (số)

Tổng A là: (101+1) x 101 :2 = 5151

Đặt B = 101 -100+99 -98+97+...+3-2+1

=> 100 +98+....+1

=> Số số hạng: (100-1)+1 = 100 (số)

Tổng B là: (100 +1) x 100 :2 = 5050

Vậy \(\frac{A}{B}=\frac{5151}{5050}=\frac{51}{50}\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Lời giải:
Xét tử số:

$101+100+99+98+...+3+2+1=(101+1).101:2=5151$

Xét mẫu số:

$101-100+99-98+...+3-2+1$

$=(101-100)+(99-98)+...+(3-2)+1=\underbrace{1+1+....+1}_{50} +1=1.50+1=51$

Vậy $A=\frac{5151}{51}=101$

15 tháng 8 2021

khó vậy 

15 tháng 8 2021
🤨🤨??????
28 tháng 7 2015

Xét tử của phân số C là :

101 + 100 + 99 + ... + 3 + 2 + 1 = \(\frac{101.102}{2}=5151\)

Xét mẫu của phân số C là : 

101 - 100 + 99 - 98 + ... + 3 - 2 + 1 = 1 + 1 + ... + 1 + 1 (có (101 - 1) : 2 + 1 = 51 số 1)

Vậy \(C=\frac{5151}{51}=\frac{51.101}{51}=101\)