K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 3 2019

a,  (2x+5)mũ 2=(x+2) mũ 2

=.> (2x+5) mũ 2-(x+2) mũ 2=0

=> (2x+5+x+2)x(2x+5-x-2)=0

=>(3x+7)x(x+3)=0

=>3x+7=0 hoặc x+3=0

3x+7=0=>x=-7/3

x+3=0 =>x=-3

vậy x=-7/3 hoặc x=-3

hok tot

23 tháng 6 2019

ĐK: ...

c) \(\frac{x+5}{x^2-5x}-\frac{x-5}{2x^2+10x}=\frac{x+25}{2x^2-50}\)

\(\Leftrightarrow\frac{2\left(x+5\right)^2}{2x\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{2x\left(x+5\right)\left(x-5\right)}=\frac{x\left(x+25\right)}{2x\left(x-5\right)\left(x+5\right)}\)

\(\Leftrightarrow2x^2+20x+50-x^2+10x-25=x^2+25x\)

\(\Leftrightarrow5x+25=0\)

\(\Leftrightarrow x=-5\)( ko t/m )

d) tương tự, ngại tính lắm

e) \(\frac{1}{x-1}-\frac{3x^2}{x^3-1}=\frac{2x}{x^2+x+1}\)

\(\Leftrightarrow\frac{x^2+x+1}{x^3-1}-\frac{3x^2}{x^3-1}=\frac{2x\left(x-1\right)}{x^3-1}\)

\(\Leftrightarrow4x^2-3x-1=0\)

\(\Leftrightarrow\left(x-1\right)\left(4x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\left(l\right)\\x=\frac{-1}{4}\left(c\right)\end{matrix}\right.\)

NV
24 tháng 6 2019

b/ \(3-100x+8x^2=8x^2+x-300\)

\(\Leftrightarrow-101x=-303\)

\(\Rightarrow x=3\)

c/ \(5\left(5x+2\right)-10\left(8x-1\right)=6\left(4x+2\right)-150\)

\(\Leftrightarrow25x+10-80x+10=24x+12-150\)

\(\Leftrightarrow-79x=-158\)

\(\Rightarrow x=2\)

d/ \(3\left(3x+2\right)-\left(3x+1\right)=12x+10\)

\(\Leftrightarrow9x+6-3x-1=12x+10\)

\(\Leftrightarrow-6x=5\)

\(\Rightarrow x=-\frac{5}{6}\)

e/ \(30x-6\left(2x-5\right)+5\left(x+8\right)=210+10\left(x-1\right)\)

\(\Leftrightarrow30x-12x+30+5x+40=210+10x-10\)

\(\Leftrightarrow13x=130\)

\(\Rightarrow x=10\)

NV
24 tháng 6 2019

\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)

\(\Rightarrow A_{min}=-3\) khi \(x=2\)

\(B=4x^2+4x+11=\left(2x+1\right)^2+10\ge10\)

\(\Rightarrow B_{min}=10\) khi \(x=-\frac{1}{2}\)

\(C=\left(x-1\right)\left(x+6\right)\left(x+2\right)\left(x+3\right)=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(=\left(x^2+5x\right)^2-36\ge-36\)

\(\Rightarrow C_{min}=-36\) khi \(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

\(D=-x^2-8x-16+21=21-\left(x+4\right)^2\le21\)

\(\Rightarrow C_{max}=21\) khi \(x=-4\)

\(E=-x^2+4x-4+5=5-\left(x-2\right)^2\le5\)

\(\Rightarrow E_{max}=5\) khi \(x=2\)

25 tháng 2 2020

giup minh voi cac bạn

https://i.imgur.com/u6zkAVa.jpg
14 tháng 2 2020

Bài 3:

a) \(\left(x-6\right).\left(2x-5\right).\left(3x+9\right)=0\)

\(\Leftrightarrow\left(x-6\right).\left(2x-5\right).3.\left(x+3\right)=0\)

\(3\ne0.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\2x-5=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\2x=5\\x=-3\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=\frac{5}{2}\\x=-3\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{6;\frac{5}{2};-3\right\}.\)

b) \(2x.\left(x-3\right)+5.\left(x-3\right)=0\)

\(\Leftrightarrow\left(x-3\right).\left(2x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\frac{5}{2}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{3;-\frac{5}{2}\right\}.\)

c) \(\left(x^2-4\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x^2-2^2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2\right)-\left(x-2\right).\left(3-2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(x+2-3+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right).\left(3x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\frac{1}{3}\end{matrix}\right.\)

Vậy phương trình có tập hợp nghiệm là: \(S=\left\{2;\frac{1}{3}\right\}.\)

Chúc bạn học tốt!

26 tháng 2 2022

hic, mk chx học

28 tháng 3 2020

a) ĐKXĐ: x khác +2

\(\frac{x-2}{2+x}-\frac{3}{x-2}-\frac{2\left(x-11\right)}{x^2-4}\)

<=> \(\frac{x-2}{2+x}-\frac{3}{x-2}=\frac{2\left(x-11\right)}{\left(x-2\right)\left(x+2\right)}\)

<=> (x - 2)^2 - 3(2 + x) = 2(x - 11)

<=> x^2 - 4x + 4 - 6 - 3x = 2x - 22

<=> x^2 - 7x - 2 = 2x - 22

<=> x^2 - 7x - 2 - 2x + 22 = 0

<=> x^2 - 9x + 20 = 0

<=> (x - 4)(x - 5) = 0

<=> x - 4 = 0 hoặc x - 5 = 0

<=> x = 4 hoặc x = 5

làm nốt đi