Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ềdfđừytretwrerfwrevcreerwaruircewtdyererrrrrrrrrrrrrrrrdbrbr trưewyt ưt rtf gygr frirfy gfyrgfyur uỷ gyurg rfuy frg egfyryfyrty trg r rei eoer7 87re r7ye7i t 87rt 7 t ryigr yyrggfygfhdg gfhg gf fgg jdfgjh f fggfgfg jffg jfg f gfg fjhg hjfg gfsdj fgdj gfdjfgdjhf gjhg f gfg fk f fjk hjkfghjkfg h hjyjj ỵthj
Lời giải:
Gọi biểu thức cần rút gọn là $P$
Xét tử số: $\sqrt{4+2\sqrt{3}}-\sqrt{3}=\sqrt{3+2\sqrt{3.1}+1}-\sqrt{3}$
$=\sqrt{(\sqrt{3}+1)^2}-\sqrt{3}=|\sqrt{3}+1|-\sqrt{3}=1$
Xét mẫu số:
Ta dự đoán sẽ rút gọn được $\sqrt[3]{17\sqrt{5}-38}$
Đặt $17\sqrt{5}-38=(a+\sqrt{5})^3$ với $a$ nguyên.
$\Leftrightarrow 17\sqrt{5}-38=a^3+15a+\sqrt{5}(3a^2+5)$
$\Rightarrow 17=3a^2+5$ và $-38=a^3+15a$
$\Rightarrow a=-2$
Vậy $17\sqrt{5}-38=(-2+\sqrt{5})^3$
$\Rightarrow (\sqrt{5}+2)\sqrt[3]{17\sqrt{5}-38}=(\sqrt{5}+2)(-2+\sqrt{5})=1$
Vậy $P=\frac{1}{1}=1$
Ôi trời nhiều thía ? làm từng câu một ha !
a \(\hept{\begin{cases}\left(x+5\right)\left(y-2\right)=\left(x+2\right)\left(y-1\right)\\\left(x-4\right)\left(y+7\right)=\left(x-3\right)\left(y+4\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}xy-2x+5y-10=xy-x+2y-2\\xy+7x-4y-28=xy+4x-3y-12\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-x+3y=8\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y=16\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\3x-y-3x+9y=16+24\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}-3x+9y=24\\8y=40\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=7\\y=5\end{cases}}\)
b, ĐKXĐ \(x\ne\pm y\)
Đặt \(\frac{1}{x+y}=a\) và \(\frac{1}{x-y}=b\)(a và b khác 0)
Ta có hệ \(\hept{\begin{cases}a-2b=2\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\5a-4b-2a+4b=3-4\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2a-4b=4\\3a=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a=-\frac{1}{3}\\b=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\frac{1}{x+y}=-\frac{1}{3}\\\frac{1}{x-y}=-\frac{7}{6}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y=-3\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+y-x+y=-3+\frac{6}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2y=-\frac{15}{7}\\x-y=-\frac{6}{7}\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-\frac{27}{14}\\y=-\frac{15}{14}\end{cases}}\)
Câu 1,2,3 Ez quá rồi :3
Câu 4:
Tổng quát:
\(\frac{1}{\sqrt{a}+\sqrt{a+1}}=\frac{\sqrt{a}-\sqrt{a+1}}{a-a-1}=\sqrt{a+1}-\sqrt{a}.\) Game là dễ :v
Câu 5 ko khác câu 4 lắm :v
Câu 5:
Tổng quát:
\(\frac{1}{\sqrt{a}-\sqrt{a+1}}=\frac{\sqrt{a}+\sqrt{a+1}}{a-a-1}=-\sqrt{a}-\sqrt{a+1}.\) Game là dễ :v
A = 22+42+62+...+202
= (1.2)2 + (2.2)2 + (3.2)2 + ... + (10.2)2
= 22 .12 + 22.22 + 22.32 + ... + 22 .102
= 22 . (12 + 22 + 32 + ... + 102)
= 4 . 385
= 1540
Đặt A1 = 1/2^1 + 1/2^2 + ... + 1/2^100
A2 = 1/2^2 + 1/2^3 + ... + 1/2^100
A3 = 1/2^3 + 1/2^4 + ... + 1/2^100
....................................
...................................
A100 = 1/2^100
A = 1/2^1 + 2/2^2 + 3/2^3 + 4/2^4 + ... + 100/2^100 =
= (1/2^1+1/2^2 +...+ 1/2^100) + (1/2^2+1/2^3 +...+ 1/2^100) + (1/2^3+1/2^4 +...+ 1/2^100) + ... + (1/2^100) = A1 + A2 + A3 + ... + A100
2^101 A1 = 2^100 + 2^99 + 2^98 + ... + 2 (1)
2^100 A1 = 2^99 + 2^98 + 2^97 + ... + 1 (2)
(2) trừ (1) ---> 2^100 A1 = 2^100 - 1 ---> A1 = (2^100 - 1) / 2^100 = 1 - 1/2^100
Tương tự
2^101 A2 = 2^99 + 2^98 + 2^97 +...+ 2 (3)
2^100 A2 = 2^98 + 2^97 + 2^96 +...+ 1 (4)
(4) trừ (3) ---> 2^100 A2 = 2^99 - 1 ---> A2 = (2^99 - 1) / 2^100 = 1/2 - 1/2^100
Tương tự
A3 = 1/4 - 1/2^100 = 1/2^2 - 1/2^100
A4 = 1/2^3 - 1/2^100
..................................
.................................
A100 = 1/2^99 - 1/2^100
Vậy A = A1 + A2 + A3 +...+ A100 = (1 + 1/2 + 1/2^2 + ... + 1/2^99) - 100/2^100
= 2 A1 - 100/2^100 = 2 - 2/2^100 - 100/2^100 = 2 - 51/2^99
===========================