Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt{x+m}=t\Rightarrow m=t^2-x\)
Pt trở thành:
\(x^2-2x-t=t^2-x\)
\(\Leftrightarrow x^2-t^2-x-t=0\)
\(\Leftrightarrow\left(x+t\right)\left(x-t-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x=t\\x-1=t\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}-x=\sqrt{x+m}\left(x\le0\right)\\x-1=\sqrt{x+m}\left(x\ge1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2-x=m\left(x\le0\right)\left(1\right)\\x^2-3x+1=m\left(x\ge1\right)\left(2\right)\end{matrix}\right.\)
TH1: (1) có nghiệm duy nhất và (2) vô nghiệm (sử dụng đồ thị hoặc BBT)
\(\Rightarrow\left\{{}\begin{matrix}m\ge0\\\left[{}\begin{matrix}m< -\dfrac{5}{4}\\\end{matrix}\right.\end{matrix}\right.\) (ko tồn tại m thỏa mãn)
TH2: (1) vô nghiệm và (2) có nghiệm duy nhất
\(\Rightarrow\left\{{}\begin{matrix}m< 0\\\left[{}\begin{matrix}m=-\dfrac{5}{4}\\m>-1\end{matrix}\right.\end{matrix}\right.\)\(\Rightarrow\left\{-\dfrac{5}{4}\right\}\cup\left(-1;0\right)\)
1.
Áp dụng công thức trung tuyến:
\(m_b^2+m_c^2=\dfrac{2a^2+2c^2-b^2}{4}+\dfrac{2a^2+2b^2-c^2}{4}\)
\(=\dfrac{4a^2+b^2+c^2}{4}\)
\(=\dfrac{9a^2+b^2+c^2-5a^2}{4}\)
\(=\dfrac{9\left(b^2+c^2\right)+b^2+c^2-5a^2}{4}\)
\(=5\left(\dfrac{b^2+c^2}{2}-\dfrac{a^2}{4}\right)=5m_a\)
1\(\frac{1}{2}\)=3/2
Ta có a/b=3/2
=>a*2=b*3
=>2a=3b(1)
Mà a-b=8
=>a=8+b
Thay a=8+b vào (1) ta có
2*(8+b)=3b
16+2b=3b
16=3b-2b
16=b
=>b=16
=>a=16+8
=>a=24
Giải:
đổi 1\(\frac{1}{2}\)=\(\frac{3}{2}\)
ta có sơ đồ:
số a:!----!----!----!
số b:!----!----!
hiệu số phần bằng nhau là:
3-2=1(phần)
số a là:
8:1*3=24
số b là:
24-8=16
đáp số:số a:24
số b:16
Bài 1:a=b*\(\frac{m}{n}\)
Bài 2:b=a:\(\frac{3}{2}\)
Bài 3:cho hỏi tỉ số % hở