K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 4 2020

b) \(\frac{3\left(2x+1\right)}{4}-\frac{5x+3}{6}+\frac{x+1}{3}=\frac{x+7}{12}\)

<=> \(\frac{13\left(x+1\right)}{12}-\frac{5x+3}{6}=\frac{x+7}{12}\)

<=> 13(x + 1) - 2(5x + 3) = x + 7

<=> 13x + 13 - 10x - 6 = x + 7

<=> 3x + 7 = x + 7

<=> 3x + 7 - x = 7

<=> 2x + 7 = 7

<=> 2x = 7 - 7

<=> 2x = 0

<=> x = 0

c) 2x + 4(x - 2) = 5

<=> 2x + 4x - 8 = 5

<=> 6x - 8 = 5

<=> 6x = 5 + 8

<=> 6x = 13

<=> x = 13/6

7 tháng 4 2022

1) 2x – (3 – 5x) = 4( x +3)

<=>2x-3+5x=4x+12

<=>2x-3+5x-4x-12=0

<=>3x-15=0

<=>x=5

7 tháng 4 2022

2) 5(2x-3) - 4(5x-7) =19 - 2(x+11)

<=>10x-15-20x+28=19-2x-22

<=>10x-15-20x+28-19+2x+22=0

<=>-8x+16=0

<=>x=2

a: \(=\dfrac{2\left(x+2\right)\left(x-1\right)}{x+2}=2x-2\)

b: \(=\dfrac{2x^3+x^2-6x^2-3x+2x+1}{2x+1}=x^2-3x+1\)

c: \(=\dfrac{x^3+2x^2-2x^2-4x+2x+4}{x+2}=x^2-2x+2\)

d: \(=\dfrac{x^2\left(x-3\right)}{x-3}=x^2\)

`@` `\text {Ans}`

`\downarrow`

loading...loading...

loading...

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm

9 tháng 10 2021

\(a,\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{1}{2}\end{matrix}\right.\\ b,\Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\\ c,\Leftrightarrow2x^2-10x-3x-2x^2=26\\ \Leftrightarrow-13x=26\Leftrightarrow x=-2\\ d,\Leftrightarrow x^2-18x+16=0\\ \Leftrightarrow\left(x^2-18x+81\right)-65=0\\ \Leftrightarrow\left(x-9\right)^2-65=0\\ \Leftrightarrow\left(x-9+\sqrt{65}\right)\left(x-9-\sqrt{65}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=9-\sqrt{65}\\9+\sqrt{65}\end{matrix}\right.\)

\(e,\Leftrightarrow x^2-10x-25=0\\ \Leftrightarrow\left(x-5\right)^2-50=0\\ \Leftrightarrow\left(x-5-5\sqrt{2}\right)\left(x-5+5\sqrt{2}\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5+5\sqrt{2}\\x=5-5\sqrt{2}\end{matrix}\right.\\ f,\Leftrightarrow5x\left(x-1\right)-\left(x-1\right)=0\\ \Leftrightarrow\left(x-1\right)\left(5x-1\right)=0\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{1}{5}\end{matrix}\right.\\ g,\Leftrightarrow2\left(x+5\right)-x\left(x+5\right)=0\\ \Leftrightarrow\left(2-x\right)\left(x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\\ h,\Leftrightarrow x^2+2x+3x+6=0\\ \Leftrightarrow\left(x+3\right)\left(x+2\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\end{matrix}\right.\\ i,\Leftrightarrow4x^2-12x+9-4x^2+4=49\\ \Leftrightarrow-12x=36\Leftrightarrow x=-3\)

\(j,\Leftrightarrow x^2\left(x+1\right)+\left(x+1\right)=0\Leftrightarrow\left(x^2+1\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x^2=-1\left(vô.lí\right)\\x=-1\end{matrix}\right.\Leftrightarrow x=-1\\ k,\Leftrightarrow x^2\left(x-1\right)=4\left(x-1\right)^2\\ \Leftrightarrow x^2\left(x-1\right)-4\left(x-1\right)^2=0\\ \Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\\ \Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\\x=2\end{matrix}\right.\)

Tìm x

a) Ta có: \(3\left(1-4x\right)\left(x-1\right)+4\left(3x+2\right)\left(x+3\right)=38\)

\(\Leftrightarrow3\left(x-1-4x^2+4x\right)+4\left(3x^2+9x+2x+6\right)=38\)

\(\Leftrightarrow3\left(-4x^2+5x-1\right)+4\left(3x^2+11x+6\right)-38=0\)

\(\Leftrightarrow-12x^2+15x-3+12x^2+44x+24-38=0\)

\(\Leftrightarrow59x-17=0\)

\(\Leftrightarrow59x=17\)

hay \(x=\frac{17}{59}\)

Vậy: \(x=\frac{17}{59}\)

b) Ta có: \(5\left(2x+3\right)\left(x+2\right)-2\left(5x-4\right)\left(x-1\right)=75\)

\(\Leftrightarrow5\left(2x^2+4x+3x+6\right)-2\left(5x^2-5x-4x+4\right)-75=0\)

\(\Leftrightarrow5\left(2x^2+7x+6\right)-2\left(5x^2-9x+4\right)-75=0\)

\(\Leftrightarrow10x^2+35x+30-10x^2+18x-8-75=0\)

\(\Leftrightarrow53x-53=0\)

\(\Leftrightarrow53x=53\)

hay x=1

Vậy: x=1

c) Ta có: \(2x^2+3\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\)

\(\Leftrightarrow2x^2+3x^2-3=5x^2+5x\)

\(\Leftrightarrow5x^2-3-5x^2-5x=0\)

\(\Leftrightarrow-3-5x=0\)

\(\Leftrightarrow-5x=-3\)

hay \(x=\frac{3}{5}\)

Vậy: \(x=\frac{3}{5}\)

d) Ta có: \(\left(8-5x\right)\left(x+2\right)+4\left(x-2\right)\left(x+1\right)+2\left(x-2\right)\left(x+2\right)=0\)

\(\Leftrightarrow8x+16-5x^2-10x+4\left(x^2+x-2x-2\right)+2\left(x^2-4\right)=0\)

\(\Leftrightarrow-5x^2-2x+16+4x^2-4x-8+2x^2-8=0\)

\(\Leftrightarrow x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

Vậy: \(x\in\left\{0;6\right\}\)

17 tháng 8 2020

a, \(12-2\left(1-x\right)^2=\left(3x-2\right)\left(2x-3\right)\)

\(< =>12-2\left(1-2x+x^2\right)=6x^2-9x-4x+6\)

\(< =>12-2+4x-2x^2=6x^2-13x+6\)

\(< =>10+4x-2x^2-6x^2+13x-6=0\)

\(< =>-8x^2+17x+4=0< =>\orbr{\begin{cases}x=\frac{17-\sqrt{417}}{16}\\x=\frac{17+\sqrt{417}}{16}\end{cases}}\)

b, \(10x+3-5x=4x+12< =>5x+3-4x-12=0\)

\(< =>x-9=0< =>x=9\)

c, \(11x+42-2x=100-9x-22< =>9x+42-100+9x+22=0\)

\(< =>18x+64-100=0< =>18x-36=0< =>x=\frac{36}{18}=2\)

d, \(2x-\left(3-5x\right)=4\left(x+3\right)< =>2x-3+5x=4x+12\)

\(< =>7x-3-4x-12=0< =>3x-15=0< =>x=\frac{15}{3}=5\)

e, \(2\left(x-3\right)+5x\left(x-1\right)=5x^2< =>2x-6+5x^2-5=5x^2\)

\(< =>2x-11+5x^2-5x^2=0< =>2x-11=0< =>x=\frac{11}{2}\)

f, \(-6\left(1,5-2x\right)=3\left(-15+2x\right)< =>-6\left(\frac{3}{2}-2x\right)=3\left(2x-15\right)\)

\(< =>-9+12x-6x+45=0< =>6x+36=0< =>x=-6\)

g, \(14x-\left(2x+7\right)=3x+12x-13< =>14x-2x-7=15x-13\)

\(< =>12x-7-15x+13=0< =>-3x+6=0< =>x=-2\)

h, \(\left(x-4\right)\left(x+4\right)-2\left(3x-2\right)=\left(x-4\right)^2\)

\(< =>x^2-16-6x+4=x^2-8x+16\)

\(< =>x^2-6x-12-x^2+8x-16=0\)

\(< =>2x-28=0< =>x=\frac{28}{2}=14\)

q, \(4\left(x-2\right)-\left(x-3\right)\left(2x-5\right)=?\)thiếu đề

24 tháng 8 2019

\(a,-5x\left(x-3\right)\left(2x+4\right)-\left(x+3\right)\left(x-3\right)+\left(5x-2\right)\left(3x+4\right)\)

\(=-5x\left(2x^2-x-12\right)-\left(x^2-9\right)+15x^2+20x-6x-8\)

\(=-10x^3+5x^2+60x-x^2+9+15x^2+20x-6x-8\)

\(=-10x^3+19x^2+74x+1\)

\(b,\left(4x-1\right)x\left(3x+1\right)-5x^2.x\left(x-3\right)-\left(x-4\right)x\left(x-5\right)\)\(-7\left(x^3-2x^2+x-1\right)\)

\(=\left(4x^2-x\right)\left(3x+1\right)-5x^4-15x^3-\left(x^2-4x\right)\left(x-5\right)\)\(-7x^3+14x^2-7x+7\)

\(=12x^3+x^2-x-5x^4-15x^3-x^3+9x^2+20x\)\(-7x^3+14x^2-7x+7\)

\(=-5x^4-11x^3+24x^2+12x+7\)

\(c,\left(5x-7\right)\left(x-9\right)-\left(3-x\right)\left(2-5x\right)-2x\left(x-4\right)\)

\(=5x^2-52x+63-6+17x-5x^2-2x^2+8x\)

\(=-2x^2-27x+57\)

24 tháng 8 2019

\(d,\left(5x-4\right)\left(x+5\right)-\left(x+1\right)\left(x^2-6\right)-5x+19\)

\(=5x^2+21x-20-x^3-x^2+6x+6-5x+19\)

\(=-x^3+4x^2+22x+5\)

\(e,\left(9x^2-5\right)\left(x-3\right)-3x^2\left(3x+9\right)-\left(x-5\right)\left(x+4\right)-9x^3\)

\(=9x^3-27x^2-5x+15-9x^3-27x^2-x^2+x+20-9x^3\)

\(=-9x^3-55x^2+4x+35\)

\(g,\left(x-1\right)^2-\left(x+2\right)^2\)

\(=x^2-2x+1-x^2-4x-4\)

\(=-6x-3\)

6 tháng 3 2020

a) 6x2 - 5x + 3 = 2x - 3x(2 - x)

<=> 6x2 - 5x + 3 = 2x - 6x + 3x2

<=> 6x2 - 5x + 3 = -4x + 3x2

<=> 6x2 - 5x + 3 + 4x - 3x2 = 0

<=> 3x2 - x + 3 = 0

=> Pt vô nghiệm

b) 25x2 - 9 = (5x + 3)(2x + 1)

<=> 25x2 - 9 = 10x2 + 5x + 6x + 3

<=> 25x2 - 9 = 10x2 + 11x + 3

<=> 25x2 - 9 - 10x2 - 11x - 3 = 0

<=> 15x2 - 12 - 11x = 0

<=> 15x2 + 9x - 20x - 12 = 0

<=> 3x(5x + 3) - 4(5x + 3) = 0

<=> (5x + 3)(3x - 4) = 0

<=> 5x + 3 = 0 hoặc 3x - 4 = 0

<=> x = -3/5 hoặc x = 4/3