K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
19 tháng 10 2020

\(\left|sinx\right|;\left|cosx\right|\le1\Rightarrow sin^{1979}x+cos^{1991}x\le sin^2x+cos^2x=1\)

\(sin2x+cos2x=\sqrt{2}sin\left(2x+\frac{\pi}{4}\right)\le\sqrt{2}\)

\(\Rightarrow VT\le1+\sqrt{2}\)

Đẳng thức xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}sinx=0\\cosx=1\end{matrix}\right.\\\left\{{}\begin{matrix}sinx=1\\cosx=0\end{matrix}\right.\end{matrix}\right.\\sin\left(2x+\frac{\pi}{4}\right)=1\end{matrix}\right.\) (ko tồn tại x thỏa mãn)

Vậy pt vô nghiệm

27 tháng 6 2019

Đáp án D

Hàm số liên tục tại x = 3 ⇔ lim x → 3 f ( x ) = f ( 3 ) .

  lim x → 3 x 2 + 1 x 3 - x + 6 = 3 2 + 1 3 3 - 3 + 6 = 1 3 .

  f ( 3 ) = b + 3 .

Vậy: b + 3 = 1 3 ⇔ b = - 3 + 1 3 = - 2 3 .

14 tháng 10 2019

Chọn D.

Hàm số liên tục tại 

Vậy: 

20 tháng 2 2021

a/ \(=\lim\limits_{x\rightarrow-\infty}x^2\left(1+\dfrac{x}{x^2}-\dfrac{1}{x^2}\right)=+\infty\)

b/ \(=\lim\limits_{x\rightarrow+\infty}\dfrac{x^2+x+1-x^2}{\sqrt{x^2+x+1}+x}+\lim\limits_{x\rightarrow+\infty}2.\dfrac{x^2-x^2+x}{\sqrt{x^2-x}+x}\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}+\dfrac{1}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}+\dfrac{1}{x^2}}+\dfrac{x}{x}}+2\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{x}{x}}{\sqrt{\dfrac{x^2}{x^2}-\dfrac{x}{x^2}}+\dfrac{x}{x}}=\dfrac{1}{2}+\dfrac{2}{2}=\dfrac{3}{2}\)

c/ \(=\lim\limits_{x\rightarrow+\infty}x\left(\dfrac{x^2+2x-x^2}{\sqrt{x^2+2x}+x}+2.\dfrac{x^2-x^2-x}{\sqrt{x^2+x}+x}\right)\)

\(=\lim\limits_{x\rightarrow+\infty}\dfrac{\dfrac{2x^2}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{2x}{x^2}+\dfrac{x}{x^2}}}+2\lim\limits_{x\rightarrow+\infty}\dfrac{-\dfrac{x^2}{x}}{\sqrt{\dfrac{x^2}{x^2}+\dfrac{x}{x^2}}+\dfrac{x}{x}}=0\)

20 tháng 8 2017

- Đặt f(x) = (x – a).(x - b) + (x - b).(x - c)+ (x – c).(x- a) thì f(x) liên tục trên R.

- Không giảm tính tổng quát, giả sử a ≤ b ≤ c

- Nếu a = b hoặc b = c thì f(b) = ( b - a).(b - c) = 0 suy ra phương trình có nghiệm x = b.

- Nếu a < b < c thì f(b) = (b - a)(b - c) < 0 và f(a) = (a - b).(a - c) >) 0

   do đó tồn tại x 0  thuộc khoảng (a, b) để  f x 0 =   0

- Vậy phương trình đã cho luôn có ít nhất một nghiệm.

NV
15 tháng 3 2020

Bài 1:

\(a=\lim\limits_{x\rightarrow+\infty}\frac{\frac{1}{x}+\frac{2}{\sqrt{x}}-1}{1+\frac{3}{x}}=-1\)

\(b=\lim\limits_{x\rightarrow+\infty}\frac{1+\frac{3}{x^2}-\frac{1}{x^3}}{\frac{1}{\sqrt{x}}+\frac{1}{x^2}}=\frac{1}{0}=+\infty\)

\(c=\lim\limits_{x\rightarrow-\infty}\frac{1-2\sqrt{\frac{1}{x^2}-\frac{1}{x}}}{\frac{1}{x}-1}=\frac{1}{-1}=-1\)

Bài 2:

\(a=\lim\limits_{x\rightarrow0}\frac{1-cosx}{1-cos3x}=\lim\limits_{x\rightarrow0}\frac{sinx}{3sin3x}=\lim\limits_{x\rightarrow0}\frac{\frac{sinx}{x}}{9.\frac{sin3x}{3x}}=\frac{1}{9}\)

\(b=\lim\limits_{x\rightarrow0}\frac{cotx-sinx}{x^3}=\frac{\infty}{0}=+\infty\)

\(c=\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}\)

\(\left|sinx\right|\le1\Rightarrow\left|\frac{sinx}{2x}\right|\le\frac{1}{\left|2x\right|}\)

\(\lim\limits_{x\rightarrow\infty}\frac{1}{2\left|x\right|}=0\Rightarrow\lim\limits_{x\rightarrow\infty}\frac{sinx}{2x}=0\)

16 tháng 5 2023

Xin đa tạ