K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 9 2021

a) \(A=\left(\dfrac{2a+1}{\sqrt{a^3}-1}-\dfrac{\sqrt{a}}{a+\sqrt{a}+1}\right)\left(\dfrac{1+\sqrt{a^3}}{1+\sqrt{a}}-\sqrt{a}\right)\left(đk:a\ge0,a\ne1\right)\)

\(=\dfrac{2a+1-\sqrt{a}\left(\sqrt{a}-1\right)}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left[\dfrac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right]\)

\(=\dfrac{2a+1-a+\sqrt{a}}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left(a-\sqrt{a}+1-\sqrt{a}\right)\)

\(=\dfrac{a+\sqrt{a}+1}{\left(\sqrt{a}-1\right)\left(a+\sqrt{a}+1\right)}.\left(\sqrt{a}-1\right)^2\)

\(=\sqrt{a}-1\)

b) \(A=\sqrt{a}-1=6\)

\(\Leftrightarrow\sqrt{a}=7\Leftrightarrow a=49\)

28 tháng 5 2023

\(M=\left(\dfrac{\sqrt{a}\left(\sqrt{a}+1\right)}{\sqrt{a}+1}+1\right)\left(\dfrac{\sqrt{a}\left(\sqrt{a}-1\right)}{\sqrt{a}-1}-1\right)=\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)=a-1\)

21 tháng 9 2021

a) \(A=\left(\dfrac{\sqrt{a}}{2}-\dfrac{1}{2\sqrt{a}}\right).\left(\dfrac{a-\sqrt{a}}{\sqrt{a}+1}-\dfrac{a+\sqrt{a}}{\sqrt{a}-1}\right)\left(đk:a>0,x\ne1\right)\)

\(=\dfrac{a-1}{2\sqrt{a}}.\dfrac{\left(a-\sqrt{a}\right)\left(\sqrt{a}-1\right)-\left(a+\sqrt{a}\right)\left(\sqrt{a}+1\right)}{a-1}\)

\(=\dfrac{a\sqrt{a}-2a+\sqrt{a}-a\sqrt{a}-2a-\sqrt{a}}{2\sqrt{a}}\)

\(=\dfrac{-4a}{2\sqrt{a}}=-2\sqrt{a}\)

b) \(A=-2\sqrt{a}>-6\)

\(\Leftrightarrow\sqrt{a}< 3\Leftrightarrow0\le a< 9\) và \(a\ne1\)

c) \(a^2-3=0\Leftrightarrow a^2=3\Leftrightarrow\sqrt{a}=\sqrt[4]{3}\)

\(\Rightarrow A=-2\sqrt{a}=-2\sqrt[4]{3}\)

\(=\dfrac{a+1-1}{\sqrt{a+1}}\cdot\dfrac{a^2+3\sqrt{a+1}-2a+2a-a^2}{a}\)

\(=\dfrac{3\sqrt{a+1}}{\sqrt{a+1}}=3\)

28 tháng 5 2023

\(A=\left(\dfrac{1-a\sqrt{a}}{1-a\sqrt{a}}+\sqrt{a}\right).\left(\dfrac{1-\sqrt{a}}{1-a}\right)^2\left(dkxd:a\ge0,a\ne1\right)\)

\(=\left(1+\sqrt{a}\right).\dfrac{\left(1-\sqrt{a}\right)^2}{\left(1-a\right)^2}\)

\(=\dfrac{\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(=\dfrac{\left(1-a\right)\left(1-\sqrt{a}\right)}{\left(1-a\right)^2}\)

\(=\dfrac{1-\sqrt{a}}{1-a}\) 

Vậy \(A=\dfrac{1-\sqrt{a}}{1-a}\) với \(a\ge0,a\ne1\)

7 tháng 7 2021

a) \(A=\sqrt{28}-\sqrt{63}+\dfrac{7+\sqrt{7}}{\sqrt{7}}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=2\sqrt{7}-3\sqrt{7}+\dfrac{\sqrt{7}\left(\sqrt{7}+1\right)}{\sqrt{7}}-\left|\sqrt{7}+1\right|\)

\(=-\sqrt{7}+\sqrt{7}+1-\sqrt{7}-1=-\sqrt{7}\)

\(B=\left(\dfrac{1}{\sqrt{x}+3}+\dfrac{1}{\sqrt{x}-3}\right)\dfrac{4\sqrt{x}+12}{\sqrt{x}}\)

\(=\dfrac{\sqrt{x}-3+\sqrt{x}+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}=\dfrac{2\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}.\dfrac{4\left(\sqrt{x}+3\right)}{\sqrt{x}}\)

\(=\dfrac{8}{\sqrt{x}-3}\)

b) \(A>B\Rightarrow-\sqrt{7}>\dfrac{8}{\sqrt{x}-3}\Rightarrow\dfrac{8}{\sqrt{x}-3}+\sqrt{7}< 0\)

\(\Rightarrow\dfrac{\sqrt{7x}+8-3\sqrt{7}}{\sqrt{x}-3}< 0\)

Ta có: \(\left\{{}\begin{matrix}8=\sqrt{64}\\3\sqrt{7}=\sqrt{63}\end{matrix}\right.\Rightarrow8-3\sqrt{7}>0\Rightarrow8-3\sqrt{7}+\sqrt{7x}>0\)

\(\Rightarrow\sqrt{x}-3< 0\Rightarrow\sqrt{x}< 3\Rightarrow x< 9\Rightarrow0< x< 9\)