K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 3 2018

a) √2 cos(x - π/4)

= √2.(cosx.cos π/4 + sinx.sin π/4)

= √2.(√2/2.cosx + √2/2.sinx)

= √2.√2/2.cosx + √2.√2/2.sinx

= cosx + sinx (đpcm)

b) √2.sin(x - π/4)

= √2.(sinx.cos π/4 - sin π/4.cosx )

= √2.(√2/2.sinx - √2/2.cosx )

= √2.√2/2.sinx - √2.√2/2.cosx

= sinx – cosx (đpcm).

1) ta co ket qua nhu sau:
sinAcosA+cosAcosB = sinAsinB+sinAcosA
<=> cosAcosB-sinAsinB=0
<=>cos(A+B)=0
<=> -cosC=0 (vi A+B+C=180)
hay cosC=0 => C=90

15 tháng 10 2017

mình làm cách này là cách khj nào mà ko cách nào khác ms làm vậy thôi, áp dụng định lí sin và cosin trong tam giác

Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

15 tháng 10 2017

woooooooooo lớp 11

21 tháng 9 2020

Đặt BC = a; CA = b; AB = c.

Theo định lý hàm sin và định lý hàm cos, ta sẽ có:

\(\frac{sinB}{sinA}=\frac{b}{a};\frac{sinC}{sinA}=\frac{c}{a};\)

\(cosB=\frac{c^2+a^2-b^2}{2ca};cosC=\frac{a^2+b^2-c^2}{2ab}\).

Do đó:

\(sinA=\frac{sinB+sinC}{cosB+cosC}\)

\(\Leftrightarrow\frac{sinB}{sinA}+\frac{sinC}{sinA}=cosB+cosC\)

\(\Leftrightarrow\frac{b}{a}+\frac{c}{a}=\frac{c^2+a^2-b^2}{2ca}+\frac{a^2+b^2-c^2}{2ab}\)

\(\Leftrightarrow b+c=\frac{c^2b+a^2b-b^3+a^2c+b^2c-c^3}{2bc}\)

\(\Leftrightarrow a^2b+a^2c-b^3-c^3=b^2c+bc^2\)

\(\Leftrightarrow\left(b+c\right)\left(b^2+c^2\right)=a^2\left(b+c\right)\Leftrightarrow a^2=b^2+c^2\).

Theo định lý Pythagoras đảo, tam giác ABC vuông tại A.

26 tháng 6 2023

Có \(\sin a-\cos a=-\sqrt{2}\left(-\sin a.\sin\dfrac{\pi}{4}+\cos a.\cos\dfrac{\pi}{4}\right)\)

\(=-\sqrt{2}\cos\left(a+\dfrac{\pi}{4}\right)\)

\(\Rightarrow\left(\sin a-\cos a\right)^2=2.\cos^2\left(a+\dfrac{\pi}{4}\right)\)

11 tháng 8 2020

À c.ơn nhìu do mình k để ý

11 tháng 8 2020

Có thể giải giúp mình 5 câu trc 5 câu này đc k?? Do mk lm r mà k bk chắc đúng k nên ms hỏi vs nhìu khi đáp án sai nx

5 tháng 8 2020

Ta có \(y'=x^2-x\left(sina+cosa\right)+\frac{3}{4}sin2a\)

Để y có cực đại và cực tiểu thì y' đổi dấu hai lần, tức là:

\(\Delta=\left(sina+cosa\right)^2-3sin2a>0\)

\(\Leftrightarrow1+sin2a-3sin2a>0\)

\(\Leftrightarrow sin2a< \frac{1}{2}\)

\(\Leftrightarrow\frac{5\eta}{6}+k2\eta< 2a< \frac{13\eta}{6}+k2\eta\)

\(\Leftrightarrow\frac{5\eta}{12}+k\eta< a< \frac{13\eta}{12}+k\eta\)

5 tháng 8 2020

Tại cực trị \(y'=0\Leftrightarrow x^2-x\left(sina+cosa\right)+\frac{3}{4}sin2a=0\)(*)

(*) cho ta\(x_1+x_2=sina+cosa,x_1x_2=\frac{3}{4}sin2a\)(*)

Để \(x_1+x_2=x^2_1+x^2_2\)thì \(x_1+x_2=\left(x_1+x_2\right)^2-2x_1+x_2\)

\(\Leftrightarrow sina+cosa=\left(sina+cosa\right)^2-\frac{3}{2}sin2a\)

\(\Leftrightarrow sina+cosa=1-\frac{1}{2}sin2a\)

Đặt \(t=cosa+sina=\sqrt{2}cos\left(a-\frac{\eta}{4}\right),t\in\left[-\sqrt{2},\sqrt{2}\right]\)

\(t^2=1+sin2a\Rightarrow sin2a=t^2-1\)

Do đó phương trình trên trở thành:

\(t=1-\frac{1}{2}\left(t^2-1\right)\Leftrightarrow2t=3-t^2\)

\(\Leftrightarrow t^2+2t-3=0\Leftrightarrow t=1,t=-3\)

\(t\in\left[-\sqrt{2},\sqrt{2}\right]\)nên chỉ nhân t=1

\(\Rightarrow cos\left(a-\frac{\eta}{4}\right)=\frac{\sqrt{2}}{2}=cos\frac{\eta}{4}\)

\(\Leftrightarrow a-\frac{\eta}{4}=\pm\frac{\eta}{4}+k2\eta\)

\(\Leftrightarrow a=k2\eta\)hay \(a=\frac{\eta}{2}+k2\eta\)(thỏa điều kiện câu a)