K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 8 2019

\(=\left(a+b-c\right)\left(a-b\right)^2\) nha ! 

P/S:Ko có mục đích xấu,đăng lên cho bạn thôi.

9 tháng 8 2019

Giỏi quá à :3

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)Cần...
Đọc tiếp

Khi thử đổi biến chứng minh Iran 96 và cái kết.... Mà chả biết lúc đổi biến có tính sai chỗ nào ko mà kết quả nó nhìn khủng khiếp quá:(

Cho a, b, c là các số không âm thỏa mãn không có 2 số nào đồng thời bằng 0. Chứng minh rằng:

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

Đặt \(\left(a+b+c;ab+bc+ca;abc\right)=\left(3u;3v^2;w^3\right)\)

Cần chứng minh

\(\left(ab+bc+ca\right)\left(\frac{1}{\left(a+b\right)^2}+\frac{1}{\left(b+c\right)^2}+\frac{1}{\left(c+a\right)^2}\right)\ge\frac{9}{4}\)

\(\Leftrightarrow v^2\left(\left(3v^2+a^2\right)^2+\left(3v^2+b^2\right)^2+\left(3v^2+c^2\right)^2\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(a^2+b^2+c^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+a^4+b^4+c^4\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow v^2\left(27v^4+6v^2\left(9u^2-6v^2\right)+81u^4-108u^2v^2+18v^4+12uw^3\right)\ge3\left(9uv^2-w^3\right)\)

\(\Leftrightarrow135u^4v^2-144u^2v^4+12uv^2w^3-27uv^2+45v^6+3w^3\ge0\)

2
8 tháng 9 2019

WTF Toán Lớp 1

8 tháng 9 2019

thấy mẹ nhầm rồi,  quy đồng quên nhân:(( mai rảnh check lại:((

@Mỹ lệ \(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}.MinP=\Sigma a^2+\frac{\Sigma ab}{\Sigma_{cyc}a^2b}}\)Ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)                                              \(=a^3+b^3+c^3+\Sigma_{cyc}a^2b+\Sigma ab^2\)Áp dụng bđt Cauchy có \(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)\(\Rightarrow3\left(a^2+b^2+c^2\right)=...=\ge3\left(a^2b+b^2c+c^2a\right)\)\(\Rightarrow...
Đọc tiếp

@Mỹ lệ \(Cho\hept{\begin{cases}a,b,c>0\\a+b+c=3\end{cases}.MinP=\Sigma a^2+\frac{\Sigma ab}{\Sigma_{cyc}a^2b}}\)

Ta có \(3\left(a^2+b^2+c^2\right)=\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)

                                              \(=a^3+b^3+c^3+\Sigma_{cyc}a^2b+\Sigma ab^2\)

Áp dụng bđt Cauchy có 

\(\hept{\begin{cases}a^3+ab^2\ge2a^2b\\b^3+bc^2\ge2b^2c\\c^3+ca^2\ge2c^2a\end{cases}}\)\(\Rightarrow3\left(a^2+b^2+c^2\right)=...=\ge3\left(a^2b+b^2c+c^2a\right)\)

\(\Rightarrow a^2+b^2+c^2\ge a^2b+b^2c+c^2a\)

Lại có \(9=\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)\)\(\Rightarrow ab+bc+ca=9-\left(a^2+b^2+c^2\right)\)

Khi đó \(P\ge a^2+b^2+c^2+\frac{ab+bc+ca}{a^2+b^2+c^2}=a^2+b^2+c^2+\frac{9-\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}\) 

                                                                                     \(=t-\frac{9-t}{t}\)

Với \(t=a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}=3\Rightarrow t\ge3\)

Đến đây dùng pp điểm rơi là ra

1

Cho hỏi bạn hỏi hay trả lời vậy??????????????????

Ko đăng linh tinh ngoài câu hỏi nha!

What??!!!!!!!

Đây là bài toán lớp 1 ???

Bn có nhầm ko z??

3 tháng 1 2020

Dạng này dùng hệ số bât định làm gì cho mệt?

15 tháng 7 2016

cái gì đây mà là toán lớp 1 á

8 tháng 8 2019

toán lớp 1 ??? giỡn quài , phi logic :3

8 tháng 8 2019

Ap dung bdt AM-GM cho 2 so ko am A,B ta co 

\(\sqrt{A}+\sqrt{B}\)\(\le\)\(2\sqrt{\frac{A+B}{2}}\)

VP =\(\sqrt{AB}.\left(\sqrt{A}+\sqrt{B}\right)\le\frac{A+B}{2}.2\sqrt{\frac{A+B}{2}}\)

    =>VP2 \(\le4.\frac{\left(A+B\right)^3}{4}=\left(A+B\right)^3\left(3\right)\)

Tu (2),(3) => DPCM

28 tháng 12 2017

thế mà bảo toán lớp 1 

29 tháng 12 2017

Áp dụng bđt bu nhi a, ta có \(M^2\le3\left(\frac{a}{b+c+2a}+...\right)\)

mà \(\frac{a}{b+c+2a}\le\frac{1}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\)

tương tự, ta có \(M^2\le\frac{3}{4}\left(\frac{a}{a+b}+\frac{a}{a+c}+\frac{b}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}+\frac{c}{c+b}\right)=\frac{9}{4}\)

=>\(M\le\frac{3}{2}\)

dấu = xảy ra <=> a=b=c

đây mà gọi là toán lớp 1 hả trời ??????????????????????

6 tháng 3 2019

bn lên mạng hoặc vào câu hỏi tương tự nha!

chúc bn hok tốt!

hahaha!

#conmeo#