Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=2\left(\dfrac{3}{5\cdot8}+\dfrac{11}{8\cdot19}+\dfrac{12}{19\cdot31}+\dfrac{70}{31\cdot101}+\dfrac{99}{101\cdot200}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+...+\dfrac{1}{101}-\dfrac{1}{200}\right)\)
\(=2\cdot\dfrac{39}{200}=\dfrac{39}{100}\)
\(=2.\left(\frac{3}{5.8}+\frac{11}{8.19}+...+\frac{99}{101.200}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{200}\right)\)
\(=2.\frac{39}{200}=\frac{39}{100}\)
\(E=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
\(=2.\left(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\right)\)
\(=2\left(\frac{1}{5}-\frac{1}{200}\right)\)
\(=2.\frac{39}{200}\)
\(=\frac{39}{100}\)
a/ \(A=\dfrac{6}{5.8}+\dfrac{22}{8.19}+\dfrac{24}{19.31}+\dfrac{198}{101.200}\)
\(=2\left(\dfrac{3}{5.8}+\dfrac{11}{8.19}+\dfrac{12}{19.31}+...+\dfrac{99}{101.200}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+....+\dfrac{1}{101}-\dfrac{1}{200}\right)\)
\(=2\left(\dfrac{1}{5}-\dfrac{1}{200}\right)\)
\(=\dfrac{39}{100}\)
b/ \(A=\dfrac{1}{2^2}+\dfrac{1}{4^2}+.....+\dfrac{1}{100^2}\)
Ta có :
\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)
...........
\(\dfrac{1}{100^2}< \dfrac{1}{99.100}\)
\(\Leftrightarrow A< \dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{99.100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+.....+\dfrac{1}{99}-\dfrac{1}{100}\)
\(\Leftrightarrow A< 1-\dfrac{1}{100}< 1\left(đpcm\right)\)
\(A=\frac{6}{5.8}+\frac{22}{8.19}+\frac{24}{19.31}+\frac{140}{31.101}+\frac{198}{101.200}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(\Rightarrow A=\frac{1}{5}-\frac{1}{200}\)
\(\Rightarrow A=\frac{39}{200}\)
giữ lời ko làm chó
gọi A = 6 / ( 5*8 ) + ... + 198 / ( 101 * 200 )
=> A / 2 = 3 / ( 5*8 ) + 11 / ( 8 * 19 ) + ... + 99 / ( 101*200 )
A / 2 = 1/5 - 1/8 + 1/8 - 1/11 + ... + 1 / 101 - 1 / 200
A / 2 = 1/ 5 -1 / 200
A / 2 = 39 /200
A = 39 / 100
đã làm bài này rồi , đúng, giờ thì k hộ cái , ko giết đấy
\(Q=\dfrac{3}{5.8}+\dfrac{11}{8.19}+\dfrac{12}{19.31}+\dfrac{70}{31.101}+\dfrac{90}{101.200}\)
\(=\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{19}+\dfrac{1}{19}-\dfrac{1}{31}+\dfrac{1}{31}-\dfrac{1}{101}+\dfrac{1}{101}-\dfrac{1}{200}\)
\(=\dfrac{1}{5}-\dfrac{1}{200}\)
\(=\dfrac{39}{200}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(=\frac{1}{5}-\frac{1}{200}\)
\(=\frac{39}{200}\)
\(\frac{3}{5.8}+\frac{11}{8.19}+\frac{12}{19.31}+\frac{70}{31.101}+\frac{99}{101.200}\)
\(=\frac{1}{5}-\frac{1}{8}+\frac{1}{8}-\frac{1}{19}+\frac{1}{19}-\frac{1}{31}+\frac{1}{31}-\frac{1}{101}+\frac{1}{101}-\frac{1}{200}\)
\(=\frac{1}{5}-\frac{1}{200}\)
\(=\frac{39}{200}\)
1/5-1/8+1/8-1/19+1/19-1/31+1/31-1/101+1/200=1/5-1/200=195/1000=39/200