Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\Leftrightarrow a^2-2a+1+4b^2-12b+9+3c^2-6c+3+1>0\)
\(\Leftrightarrow\left(a-1\right)^2+\left(2b-3\right)^2+3\left(c-1\right)^2+1>0\) (luôn đúng)
\(\Rightarrow\) BĐT ban đầu đúng
chuyển 2a + 4b + 6c sang vế trái ta được:
a^2 + b^2 + c^2 -2a -4b -6c + 14 =0
<=> a^2 -2a + 1 + b^2 - 4b + 4 + c^2 - 6c +9 = 0
<=> (a-1)^2 + (b-2)^2 + (c-3)^2 = 0
=> (a - 1)^2 = 0 a - 1 = 0 a = 1
(b - 2)^2 = 0 <=> b - 2 = 0 <=> b = 2
(c - 3)^2 = 0 c - 3 = 0 c = 3
=> a + b + c = 1 + 2 + 3 = 6
Mình trình bày không được đẹp, bạn thông cảm nha =)
Ta có:
\(\left(a^2+4b^2+3c^2\right)-\left(20a+12b-6c-14\right)\)
\(=a^2+4b^2+3c^2-20a-12b-6c-14\)
\(=\left(a^2-2.a.10+100\right)+\left[\left(2b\right)^2-2.2b.3+9\right]+3\left(c^2+2c+1\right)-98\)
\(=\left(a-10\right)^2+\left(2b-3\right)^2+3\left(c+1\right)^2-98\ge-98\)
Vậy đề bài vô lý
\(3a+2b-c-d=1\left(1\right)\)
\(2a+2b-c+d=2\left(2\right)\)
\(4a-2b-2c+d=3\left(3\right)\)
\(8a+b-6c+d=4\left(4\right)\)
Lấy (4)-(3)-(2)-(1) , ta được
\(8a+b-6c+d-\left(4a-2b-3c+d\right)-\left(2a+2b-c+d\right)-\left(3a+2b-c-d\right)=4-3-2-1\)
Bạn lạ ghê cho đề mà không nêu yêu cầu lấy gì mọi người giải được.
Yêu cầu đề bài đâu Hà Trung Chiến