Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
25*3 thay bằng các chữ số 2, 5 để 25*3 chia het cho 3 va ko chia het cho 9
có \(2+5+x+3⋮3\)
=>x=2;5;8
mà\(2+5+x+3\)không chia hết cho 9
=>x=2;5
* = 1 ; 2 ; 3 ; 4 5 ; 6 ; 7 ; 8 ; 9 ; 0
b/ 120 - x : 4 = 34 : 311
120 - x : 4 = 37
120 - x : 4 = 2187
x : 4 = 120 - 2187
x : 4 = -2067
=> x = -8268
a) 3*2 có tận cùng là 2 nên chia hết cho 2
vậy * = 0;1;2 ... 9
b) 120 - x : 4 = \(3^4:3^{11}\)
120 - x : 4 = \(-\left(3^7\right)\)
x : 4 = 120 - \(\left[-\left(3^7\right)\right]\)
x : 4 = 2307
x = 2307 x 4
x = 9228
1) Chữ số tự nhiên có 4 chữ số có:
9999-1000+1=9000( số)
A) Chữ số chia hết cho 5 nhưng không chia hết cho 2 có chữ số tận cùng là 5
Chữ số tự nhiên có 4 chữ số chia hết cho 5 nhưng không chia hết cho 2 có:
(9995-1005):10+1=900(số)
B)Chữ số chia hết cho 2 vá 5 có chữ số tận cùng là 0
Chữ số tự nhiên có 4 chữ số chia hết cho 2 và 5 có :
(9990-1000):10+1=900(số)
C)Chữ số chia cho 5 dư 3 có chữ số tận cùng là 3 và 8
Chữ số tự nhiên có 4 chữ số chia cho 5 dư 3 có:
(9998-1003):5+1=1800(số)
Đáp số :1) 9000 số
A) 900 số
B) 900 số
C) 1800 số
Câu 1: A = ( 3 + 3² + 3^5 + 3^7 ) + ( 3^9 + 3^11 + 3^13 + 3^15 ) + . + ( 3^1991 + 3^1989 + 3^1987 + 3^1985 )
A = 2442 + 3^9( 3 + 3² + 3^5 + 3^7 ) + .......... + 3^1985( 3 + 3² + 3^5 + 3^7 )
A = 2442 + 3^9 . 2442 + ........... + 3^1985.2442
Do 2442 chia hết cho 41 => A chia hết cho 41
( Dơn giản là cxư nhóm 4 số hạng liền nhau của dãy vào với nhau )
\(7^6+7^5-7^4\)
\(=7^6+\left(7^5-7^4\right)\)
\(=7^6+\left[7\left(7^4\right)-7^4\right]\)
\(=7^6+\left(6\cdot7^4\right)\)
\(=7^4\cdot7^2+7^4\cdot6\)
\(=7^4\cdot\left(49+6\right)=7^4\cdot55\)
\(\Rightarrow7^4\cdot55⋮11\)
A=(3+3^2+3^3+3^4+3^5)+......+(3^86+3^87+3^88+3^89+3^90)
Chia làm 18 ngoặc mỗi ngoặc đều chia hết cho 11
vay A CHIA HET CHO 11
A=(3+3^2+3^3)+...+(3^88+3^89+3^90)
chia làm 30 ngoặc mỗi ngoặc đều chia hết cho 13
Vậy A chia hết cho 13
Trả lời :
Cho A = 3+32+33+34+...+3903+32+33+34+...+390 . Chứng minh rằng A chia hết cho 11 và 13
Bài làm:
Ta có : A = (3+32+33+34+35)+...+(386+387+388+389+390)
= 3(1+3+32+33+34)+...+386(1+3+32+33+34)
= 3 . 121 + 36 . 121 + ... + 386 . 121
= 3 . 11 . 11 + 36 . 11 . 11 + ... + 386 . 11 . 11 ⋮ 11
⇒ A ⋮11
A = ( 3+32+33)+(34+35+36)+...+(388+389+390)
= 3(1+3+32) + 34(1+3+32) + ... + 388(1+3+32)
= 3 . 13 + 34 . 13 + ... + 388 . 13 ⋮13
⇒ A ⋮ 13
Vậy A chia hết cho 11 và 13
Hok_Tốt
#Thiên_Hy
ban lm sai roi bn