Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, - A = 31 + 32 + 33 + ... + 3120
= (31+32) + (33+34) + ... + (3119+3120)
= (3+32) + 32(3+32) + ... + 3118(3+32)
= 12 + 32.12 + ... + 3118.12
= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4
- A = 31 + 32 + 33 + ... + 3120
= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)
= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)
= 39 + 33.39 + ... + 3117.39
= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13
- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82
b,
Nhận thấy:
34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)
=> 34n+2 = ...3.3 = ...9
34n+3 = ...9.3 = ...27 = ...7
34n = ...3: 3 = ...1
Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)
=> A = (...3+...9+...7+...1).30 = ...0
Vậy CSTC của A là 0
c,
A = 31 + 32 + 33 + ... + 3120
=> 3A = 32 + 33 + 34 + ... + 3121
=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)
=> 2A = 3121 - 3
=> 2A + 3 = 3121
Vậy 2A + 3 là luỹ thừa của 3
a.S=3+32...+3100
=(3+32)+...+(399+3100)
=3(1+3)+...+399(1+3)
=3.4+...+399.4
=4(3+...+399)\(⋮\)4
a, - A = 31 + 32 + 33 + ... + 3120
= (31+32) + (33+34) + ... + (3119+3120)
= (3+32) + 32(3+32) + ... + 3118(3+32)
= 12 + 32.12 + ... + 3118.12
= 12(1+32+34+...+3118) ⋮ 12 ⋮ 4
- A = 31 + 32 + 33 + ... + 3120
= (31+32+33) + (34+35+36) + ...+ (3118+3119+3120)
= (31+32+33) + 33(31+32+33) + ... + 3117(31+32+33)
= 39 + 33.39 + ... + 3117.39
= 39(1+33+36+...+3117) ⋮ 39 ⋮ 13
- Vì A chia hết cho 13 và 4. Mà ƯCLN(4,13) = 1 nên A chia hết cho (4.13) = 82
b,
Nhận thấy:
34n+1 = ...3 (theo quy tắc về chữ số tận cùng của một luỹ thừa, lên Youtube coi video của cô Huyền OLM)
=> 34n+2 = ...3.3 = ...9
34n+3 = ...9.3 = ...27 = ...7
34n = ...3: 3 = ...1
Mà 120: 4 = 30 (4 là số số luỹ thừa đc lặp lại)
=> A = (...3+...9+...7+...1).30 = ...0
Vậy CSTC của A là 0
c,
A = 31 + 32 + 33 + ... + 3120
=> 3A = 32 + 33 + 34 + ... + 3121
=> 3A - A = (32 + 33 + 34 + ... + 3121) - (31 + 32 + 33 + ... + 3120)
=> 2A = 3121 - 3
=> 2A + 3 = 3121
Vậy 2A + 3 là luỹ thừa của 3
P/s: Không phải 2A - 3
a)
\(A=3+3^2+3^3+3^4+...+3^{120}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow2A=3^{121}-3\)
\(\Rightarrow A=\frac{3^{121}-3}{2}\)
b)
\(2A+3\)
\(=3^{121}-3+3\)
\(=3^{121}\)
Mà 3121 là lũy thừa của 3
\(\Rightarrow\) 2A + 3 là lũy thừa của 3.
giúp e giải vs e đang cần gấp
a, \(A=3+3^2+...+3^{120}\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{119}\left(1+3\right)\)
\(=4\left(3+3^3+3^5+...+3^{119}\right)\)
\(\Rightarrow A⋮4\)
\(A=3+3^2+...+3^{120}\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{118}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{118}\right)\)
\(\Rightarrow A⋮13\)
b, \(3A=3^2+3^3+...+3^{121}\)
\(\Rightarrow2A=3^{121}-3=3\left(3^{120}-1\right)\)
Vì \(3^{120}=3^{4.30}\) có chữ số tận cùng là 1 suy ra \(3^{120}-1\) có chữ số tận cùng là 0
\(\Rightarrow A=\dfrac{3\left(3^{120}-1\right)}{2}\) có chữ số tận cùng là 0
c, Đề là \(2A+3\) thì có vẻ hợp lí hơn
\(2A+3=3^{121}-3+3=3^{121}\) là lũy thừa của 3