Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có
\(2^8.4.13=2^9.26\)
\(2^7.8.65=2^9.130\)
Nên \(2^8.4.13+2^7.8.65=2^9.156\)
Mà \(2^9:2^9=1\)
\(156:3=52\)
Do đó A = 52
1)
a)
\(\dfrac{-5}{11}\cdot\dfrac{4}{7}+\dfrac{-5}{11}\cdot\dfrac{3}{7}-\dfrac{8}{11}\\ =\dfrac{-5}{11}\cdot\left(\dfrac{4}{7}+\dfrac{3}{7}\right)-\dfrac{8}{11}\\ =\dfrac{-5}{11}\cdot1-\dfrac{8}{11}\\ =\dfrac{-5}{11}-\dfrac{8}{11}\\ =\dfrac{-5}{11}+\dfrac{-8}{11}\\ =\dfrac{-13}{11}\)
b)
\(\left(\dfrac{2}{9}:\dfrac{5}{3}+\dfrac{1}{3}:\dfrac{5}{3}\right)^2-\left(\dfrac{1}{3}-\dfrac{5}{8}\right)\\ =\left(\dfrac{2}{9}\cdot\dfrac{3}{5}+\dfrac{1}{3}\cdot\dfrac{3}{5}\right)^2-\left(\dfrac{-7}{24}\right)\\ =\left[\dfrac{3}{5}\cdot\left(\dfrac{2}{9}+\dfrac{1}{3}\right)\right]^2+\dfrac{7}{24}\\ =\left[\dfrac{3}{5}\cdot\dfrac{5}{9}\right]^2+\dfrac{7}{24}\\ =\left[\dfrac{1}{3}\right]^2+\dfrac{7}{24}\\ =\dfrac{1}{9}+\dfrac{7}{24}\\ =\dfrac{29}{72}\)
c) \(14-\left|\dfrac{-3}{4}\right|-\left(\dfrac{1}{3}-\dfrac{5}{8}\right)\\ =14-\dfrac{3}{4}-\left(\dfrac{-7}{24}\right)\\ =14+\dfrac{-3}{4}+\dfrac{7}{24}\\ =13\dfrac{13}{24}\)
a)\(\frac{5}{7}:X=1-\frac{4}{7}=\frac{3}{7}\)
\(X=\frac{5}{7}:\frac{3}{7}=\frac{5}{3}\)
b)
\(\left(\frac{1}{11}-\frac{1}{13}+\frac{1}{13}-\frac{1}{14}+...+\frac{1}{19}-\frac{1}{21}\right)-X=\frac{4}{3}-\frac{221}{231}=\frac{29}{77}\)
\(\left(\frac{1}{11}-\frac{1}{21}\right)-X=\frac{29}{77}\)
\(X=\frac{10}{231}-\frac{29}{77}=-\frac{1}{3}\)
xem xong nhớ tích
a. 600 - 30 =570
b. 72 + (-3) = 69
c. 2021 + 33:(9 +2x12)
=2021 + 33: 33
=2021+1
=2022
d. 186: (44+2x9)
=186 : 62
=3
a) \(P=\dfrac{1}{1.2}+\dfrac{2}{2.4}+\dfrac{3}{4.7}+...\dfrac{10}{46.56}\)
\(P=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+...\dfrac{1}{46}-\dfrac{1}{56}\)
\(P=1-\dfrac{1}{56}\)
\(P=\dfrac{55}{56}\)
b) \(A=\dfrac{3}{1.2}+\dfrac{3}{2.3}+\dfrac{3}{3.4}+...+\dfrac{3}{99.100}\)
\(A=3\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(A=3\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(A=3\left(1-\dfrac{1}{100}\right)\)
\(A=3.\dfrac{99}{100}\)
\(A=\dfrac{297}{100}\)
c) \(B=\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\)
\(B=1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\)
\(B=1-\dfrac{1}{103}\)
\(B=\dfrac{102}{103}\)
d) \(C=\dfrac{5}{1.4}+\dfrac{5}{4.7}+\dfrac{5}{7.10}+...+\dfrac{5}{100.103}\)
\(C=\dfrac{5}{3}\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+...+\dfrac{3}{100.103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+...+\dfrac{1}{100}-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}\left(1-\dfrac{1}{103}\right)\)
\(C=\dfrac{5}{3}.\dfrac{102}{103}\)
\(C=\dfrac{170}{103}\)
e) \(D=\dfrac{7}{1.5}+\dfrac{7}{5.9}+\dfrac{7}{9.13}+...+\dfrac{7}{101.105}\)
\(D=\dfrac{7}{4}\left(\dfrac{4}{1.5}+\dfrac{4}{5.9}+\dfrac{4}{9.13}+...+\dfrac{4}{101.105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{13}+...+\dfrac{1}{101}-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}\left(1-\dfrac{1}{105}\right)\)
\(D=\dfrac{7}{4}.\dfrac{104}{105}\)
\(D=\dfrac{26}{15}\)
\(91924\)\(:1372=67\)
\(163840:98304=\frac{5}{3}\)
k mk nha
cần gấp mn