Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.2 = 1/3. 1.2.3 - 0.1.2
2.3 = 1/3. 2.3.4 - 1.2.3
................................
1999.2000 = 1/3. 1999.2000.2001 - 1998.1999.2000 = 3998000
Quậy A = 3998000
Hãy k đúng cho mik nha!!!!!!!!!!
1.2+2.3+3.4+.........+1999.2000
=>3A=1.2.3+2.3.3+3.4.3+....+1999.2000.3
=>3A=1.2.3+2.3.(4-1)+3.4.(5-2)+.....+1999.2000.(2001-1998)
=>3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+....+1999.2000.2001-1998.1999.2000
=>3A=1999.2000.2001
=>A=7999998000:3
=>A=2666666000
3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Ta có: \(A=1.2+2.3+...+98.99\)
\(\Rightarrow3A=1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\)
\(\Rightarrow3A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99\)
\(\Rightarrow3A=98.99.100\)
\(\Rightarrow A=\frac{98.99.100}{3}\)
\(\Rightarrow A=98.33.100\)
\(\Rightarrow A=323400\)
A=1.2+2.3+3.4+........+98.99
3A=1.2.3+2.3.3+3.4.3+........+98.99.3
3A=1.2.3+2.3.(4 -1) +3.4.(5 -2)+........+98.99.(100 -97)
3A=1.2.3+2.3.4 -1.2.3 +3.4.5 -2.3.4 +........+98.99.100 -97.98.99
3A=98.99.100
===>A=(98.99.100)/3
A= 1.2 +2.3+ 3.4 +4.5+...+ 99.100
3A = 1.2.3 +2.3.3+ 3.4.3+...+99.100.3
3A = 1.2.3 +2.3(4-1)+ 3.4(5-2)+...+99.100(101-98)
3A = 1.2.3 +2.3.4-1.2.3+ 3.4.5-2.3.4+...+99.100.101-98.99.100
3A = 999900
A = 333300
A= 1. 2 + 2.3 +3.4 + 4.5 + 99.100
A=2 +6+12+20 + 9900
A = 9930
bn nha
tk mk nha
Đặt A= 1.2+2.3 +.......+99.100
3A= 1.2.3+2.3.4+3.4.3 +......+ 99.100.3
3A= 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
3A = (1.2.3 + 2.3.4 + 3.4.5 +...... + 99.100.101) - (0.1.2 + 1.2.3 + 2.3.4 +.......+ 98.99.100)
3A = 99.100.101 - 0.1.2
3A = 999900 - 0
3A= 999900
A= 999900 : 3
A = 333300
Đặt A = 1.2+2.3 +.......+99.100
=> 3A = 3.( 1.2+2.3 +.......+99.100 )
=> 3A = 1.2. (3 - 0) + 2.3.(4 - 1) +3.4. (5 - 2)....... . 99.100. (101 - 98)
=> 3A = 0.1.2 + 1.2.3 - 1.2.3 + 2.3.4 - 2.3.4 + ..... + 99.100.101
=> 3A =0.1.2 + 99.100.101
=> 3A = 999900
=> A = 999900 : 3
Vậy A = 333300
Gợi ý
phân số tối giản có ước chung lớn nhất là 1
tim d (UCLN 4n+1;12n+7)
ta có d= +-1;+-2;+-4
sau đó CM 4n+1 ko chia hết cho 2 và 4 và ta tìm đc d=1
b) Đầu tiên lấy cả cụm A trừ đi cụm B phá ngoặc rồi nhóm 1.2-1.3;2.3-2.4...
rồi công -1+(-2)+(-3)+...+(-2016)
ta tìm đc kết quả là -2033136
à đúng rồi, mk cần các bạn giải chi tiết bài giải giùm mk! ;)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+...+\frac{1}{2003\cdot2004}\)
\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2004}{2004}+\frac{-1}{2004}=\frac{2003}{2004}\)
#Hoq chắc _ Baccanngon
1. 3S= 1.2.(3-0)+ 2.3.(4-1)+...+ n.(n+1).[(n+2)-(n-1)]
=[1.2.3+ 2.3.4+...+ (n-1)n(n+1)+ n(n+1)(n+2)]- [0.1.2+ 1.2.3+...+(n-1)n(n+1)]
=n(n+1)(n+2)
=>S
Biểu thức này dùng để tính tổng 1^2+..+n^2 rất tiện và thực tế cũng là ket quả của hệ quả trên.
dùng cách thức tương tự có thể tính S=1.2.3+...+ n(n+1)(n+2) từ đó suy ra tổng 1^3+...+n^3
Việc sử dụng trước kết quả tổng 1^2+...+n^2 theo tôi là ngược tiến trình.
2. S = 1.2.3 + 2.3.4 +..+ (n-1).n.(n+1)
4S = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 +..+ (n-1)n(n+1).4
ghi dọc cho dễ nhìn:
(k-1)k(k+1).4 = (k-1)k(k+1)[(k+2) - (k-2)] = (k-1)k(k+1)(k+2) - (k-2)(k-1)k(k+1)
ad cho k chạy từ 2 đến n ta có:
1.2.3.4 = 1.2.3.4
2.3.4.4 = 2.3.4.5 - 1.2.3.4
3.4.5.4 = 3.4.5.6 - 2.3.4.5
...
(n-2)(n-1)n.4 = (n-2)(n-1)n(n+1) - (n-3)(n-2)(n-1)n
(n-1)n(n+1).4 = (n-1)n(n+1)(n+2) - (n-2)(n-1)n(n+1)
+ + cộng lại vế theo vế + + (chú ý cơ chế rút gọn)
4S = (n-1)n(n+1)(n+2)
3.
đợi mãi mà chẳng có ai giúp hết zợ
haizzz..."tỏ ra ý chán nản"
3A = 1.2.3 + 2.3.(4-1) + ... + 1001.1002.(1003-1000)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 1001.1002.1003 - 1000.1001.1002
3A = 1001.1002.1003
A = 335337002
Dài quá, to quá =))
Học tốt ^^
A=1.2+2.3+3.4+...+1001.1002
3A = 1.2.3 + 2.3.(4-1) + 3.4.(5-2) + ...+ 1001 . 1002 . (1003 - 1000)
3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 1001.1002.1003 - 1000 . 1001.1002
= 1001.1002.1003
= 1006011006