Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: =>x=0 hoặc x=-3
b: =>x-2=0 hoặc 5-x=0
=>x=2 hoặc x=5
c: =>x-1=0
hay x=1
\(\left|x\right|=2\Rightarrow\left[{}\begin{matrix}x=-2\\x=2\end{matrix}\right.\)
Thay x=-2 vào B ta có:
\(B=4x^3+x-2022=4.\left(-2\right)^3+\left(-2\right)-2022=-32-2-2022=-2056\)
Thay x=2 vào B ta có:
\(B=4x^3+x-2022=4.2^3+2-2022=32+2-2022=-1988\)
\(a,\Leftrightarrow\left[{}\begin{matrix}x-8=0\\x^3+8=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x^3=-8\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=8\\x=-2\end{matrix}\right.\\ b,\Leftrightarrow4x-3-x-5=30-3x\\ \Leftrightarrow4x-x+3x=30+5+3\\ \Leftrightarrow6x=38\\ \Leftrightarrow x=\dfrac{19}{3}\)
Vì \(x^2+1>0\) nên \(x^2-4=0\)
\(\Leftrightarrow x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\end{matrix}\right.\)
\(a,1-\left(\dfrac{\dfrac{5}{3}}{8}+x-\dfrac{\dfrac{7}{5}}{24}\right)-\dfrac{\dfrac{16}{2}}{3}=0\\ \Leftrightarrow1-\left(\dfrac{5}{24}+x-\dfrac{7}{120}\right)=\dfrac{8}{3}\\ \Leftrightarrow\dfrac{3}{20}+x=1-\dfrac{8}{3}=-\dfrac{5}{3}\\ \Leftrightarrow x=-\dfrac{5}{3}-\dfrac{3}{20}=-\dfrac{109}{60}\)
a) \(\left|4x-1\right|-\left|3x-\dfrac{1}{2}\right|=0\\ \Leftrightarrow\left|4x-1\right|=\left|3x-\dfrac{1}{2}\right|\\ \Leftrightarrow\left[{}\begin{matrix}4x-1=3x-\dfrac{1}{2}\\4x-1=\dfrac{1}{2}-3x\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}4x-3x=1-\dfrac{1}{2}\\4x+3x=\dfrac{1}{2}+1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\7x=\dfrac{3}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{3}{14}\end{matrix}\right.\)
Vậy \(x\in\left\{\dfrac{1}{2};\dfrac{3}{14}\right\}\) là nghiệm của pt.
b) \(\left|x-1\right|-2x=\dfrac{1}{2}\\ \Leftrightarrow\left|x-1\right|=2x+\dfrac{1}{2}\left(ĐK:x\ge\dfrac{-1}{4}\right)\\ \Leftrightarrow\left[{}\begin{matrix}x-1=2x+\dfrac{1}{2}\\x-1=-2x-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x-2x=1+\dfrac{1}{2}\\x+2x=1-\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}-x=\dfrac{3}{2}\\3x=\dfrac{1}{2}\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-3}{2}\left(ktmđk\right)\\x=\dfrac{1}{6}\left(tmđk\right)\end{matrix}\right.\)
Vậy \(x=\dfrac{1}{6}\) là nghiệm của pt.
Lời giải:
a.
$|4x-1|-|3x-\frac{1}{2}|=0$
$\Leftrightarrow |4x-1|=|3x-\frac{1}{2}$
\(\Leftrightarrow \left[\begin{matrix} 4x-1=3x-\frac{1}{2}\\ 4x-1=\frac{1}{2}-3x\end{matrix}\right.\Leftrightarrow \left[\begin{matrix} x=\frac{1}{2}\\ x=\frac{3}{14}\end{matrix}\right.\)
b. Nếu $x\geq 1$ thì:
$|x-1|-2x=\frac{1}{2}$
$\Leftrightarrow x-1-2x=\frac{1}{2}$
$\Leftrightarrow -x-1=\frac{1}{2}$
$\Leftrightarrow x=\frac{-3}{2}$ (vô lý vì $x\geq 1$)
Nếu $x< 1$ thì:
$1-x-2x=\frac{1}{2}$
$\Leftrightarrow x=\frac{1}{6}$ (tm)
a) Ta có: \(\left(x-\frac{1}{5}\right).\left(x+\frac{4}{7}\right)>0\)
+ \(\hept{\begin{cases}x-\frac{1}{5}>0\\x+\frac{4}{7}>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>\frac{1}{5}\\x>-\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x>\frac{1}{5}\)
+ \(\hept{\begin{cases}x-\frac{1}{5}< 0\\x+\frac{4}{7}< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< \frac{1}{5}\\x< -\frac{4}{7}\end{cases}}\)\(\Rightarrow\)\(x< -\frac{4}{7}\)
Vậy \(x>\frac{1}{5}\)hoặc \(x< -\frac{4}{7}\)
b) Ta có: \(\left(x+\frac{2}{3}\right).\left(x+2\right)< 0\)
+ \(\hept{\begin{cases}x+\frac{2}{3}>0\\x+2< 0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x>-\frac{2}{3}\\x< -2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}< x< -2\)( vô lí )
+ \(\hept{\begin{cases}x+\frac{2}{3}< 0\\x+2>0\end{cases}}\)\(\Leftrightarrow\)\(\hept{\begin{cases}x< -\frac{2}{3}\\x>-2\end{cases}}\)\(\Rightarrow\)\(-\frac{2}{3}>x>-2\)
Vậy \(-2< x< -\frac{2}{3}\)