Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có 9 cách chọn số hàng nghìn
8 cách chọn số hàng trăm
7 cách chọn số hàng chục
6 cách chọn số hàng đơn vị
Vậy số số hạng lập được là :
9 . 8 . 7. 6 = 3024 ( số hạng )
b,Ta có 9 cách chọn số hàng nghìn
9 cách chọn số hàng trăm
9 cách chọn số hàng chục
9 cách chọn số hàng đơn vị
Vậy số số hạng lập được là :
9 . 9 .9 . 9 = 6561 ( số )
c, Tổng các chữ số đã lập ở câu a là :
(1 + 2 + 3 + ... +9). 9 + (1+2+3+...+9).8 + (1+2+3+...+9).7 + (1+2+3+...+9).6
= ( 1+2+3+...+9) . (9+8+7+6)
= 45 . 30
= 1350
Chúc bạn học tốt nha
Các số là:
2035;2053;2305;2350;2503;2530;3025;3052;3205;3250;3502;3520;5023;5032;5203;5230;5302;5320
2035+2053+2305+2350+2503+2530+3025+3052+3205+3250+3502+3520+5023+5032+5203+5230+5302+5320=44563
A, Chữ số hàng nghìn có 9 cách chọn
Chữ số hàng trăm có 8 cách trọn ( trừ chữ số hàng nghìn)
Chữ số hàng chục có 7 cách chọn
Chữ số hàng đơn vị có 6 cách chọn
Vậy có 9.8.7.6=3024 số
B, Mỗi hàng có 9 cách chọn, do ko nhất thiết khác nhau
Vậy có 9.9.9.9=6561 số
C, với mỗi chữ số hàng nghìn ta có 8.7.6=336
Vậy tổng hàng nghìn là (1+2+…+9).336.1000=15120000
Tương tự, tổng hàng trăm là (1+2+...+9).336.100=1512000
Tổng hàng chục là 151200
Tổng hàng đơn vị là 15120
Vậy tổng các số là 15120000+1512000+151200+15120=16798320
Gọi S là tập hợp gồm 8 chữ số đã cho tức là S = {0;1; 2; 3; 4; 5; 6; 7}
Xét các số abcde mở rộng gồm 5 chữ số khác nhau lấy từ S với a có thể bằng 0.
Có 8 cách chọn chữ số a lấy từ tập S.
Có 7 cách chọn chữ số b lấy từ tập S và khác a.
Có 6 cách chọn chữ số c lấy từ tập S và khác a, b.
Có 5 cách chọn chữ số d lấy từ tập S và khác a, b, c.
Có 4 cách chọn chữ số e lấy từ tập S và khác a, b, c, d.
Vậy có 8 x 7 x 6 x 5 x 4 = 6720 số abcde gồm 5 chữ số khác nhau lấy từ S.
Do vai trò mỗi chữ số của tập S xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 6720 : 8 = 840 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số abcde mở rộng là:
840 x (0 + 1 + 2 + 3 + 4 + 5 + 6 + 7) x 11111 = 261330720 (1)
Các số abcde mở rộng với a = 0 chính là các số bcde với b, c, d, e là các chữ số khác nhau lấy từ tập T = {1; 2; 3; 4; 5; 6; 7}.
Có 7 cách chọn chữ số b lấy từ tập T.
Có 6 cách chọn chữ số c lấy từ tập T và khác b.
Có 5 cách chọn chữ số d lấy từ tập T và khác b, c.
Có 4 cách chọn chữ số e lấy từ tập T và khác b, c, d.
Vậy có 7 x 6 x 5 x 4 = 840 số bcde với b, c, d, e khác nhau lấy từ tập T.
Do vai trò mỗi chữ số của tập T xuất hiện trong mỗi hàng là như nhau nên mỗi hàng có 840 : 7 = 120 lần xuất hiện của mỗi chữ số trong mỗi hàng.
Vậy tổng các số bcde là: 120 x (1 + 2 + 3 + 4 + 5 + 6 + 7) x 1111 = 3732960 (2)
Từ (1) và (2) suy ra tổng các số abcde cần tìm là:
261330720 – 3732960 = 257597760
Tổng các chữ số của mỗi số là:
1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45
Vì 45 chia hết cho 9 nên các số đều chia hết cho 9
Gọi ƯCLN của các số đó là n
=> n chia hết cho 9 (1)
Xét 2 số:
987654321 và 987654312
Vì n = ƯCLN(987654321; 987654312)
=> 9 chia hết cho n (2)
Từ (1) và (2) => n = 9
Vậy...
Lập được tất cả 362880 số tự nhiên từ 9 chữ số đó
ƯCLN của các số đó là 9