Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 2 + (-3) + 4 + (-5) + ... + 2010 + (-2011) + 2012 + (-2013) + 2014) (gồm (2014 - 2) : 2 + 1= 1007 số hạng)
=> S - 2014 = (2 - 3) + (4 - 5) + .... + (2010 - 2011) + (2012 - 2013) (gồm 503 cặp)
=> S - 2014 = -1 - 1 - .... - 1 - 1 (gồm 503 số 1)
=> S - 2014 = -503
=> S = -503 + 2014 = 1511
b) Ta có: |a + 2| + |b - 5| = 0
<=> \(\hept{\begin{cases}a+2=0\\b-5=0\end{cases}}\)
<=> \(\hept{\begin{cases}a=-2\\b=5\end{cases}}\)
\(S=2+\left(-3\right)+4+\left(-5\right)+...+\left(-2013\right)+2014\)
\(\Rightarrow S=\left(2-3\right)+\left(4-5\right)+\left(6-7\right)+...+\left(2012-2013\right)+2014\)
\(\Rightarrow S=-1-1-1-1-1-...-1+2014\)
Từ số 2 đến số 2013 có: (2013-2):1+1=2012 số, chia được 2012:2=1006 cặp
\(\Rightarrow S=\left(-1\right)\cdot1006+2014\)
\(\Rightarrow S=2014-1006\)
\(\Rightarrow S=1008\)
:333
Có: \(\left(x-2y+1\right)^2\ge0\forall x;y\)
\(\left|y+1\right|\ge0\forall y\)
\(\Rightarrow\left(x-2y+1\right)^2+\left|y+1\right|\ge0\forall x;y\)
\(\Rightarrow\left(x-2y+1\right)^2+\left|y+1\right|+17\ge17\forall x;y\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-2y+1\right)^2=0\\\left|y+1\right|=0\end{cases}}\)
\(\left|y+1\right|=0\Leftrightarrow y+1=0\Leftrightarrow y=-1\)
\(\left(x-2y+1\right)^2=0\Leftrightarrow x-2y+1=0\Leftrightarrow x-2.\left(-1\right)+1=0\Leftrightarrow x+2+1=0\Leftrightarrow x+3=0\Leftrightarrow x=-3\)
Vậy GTNN của A = 17 \(\Leftrightarrow\left(x;y\right)=\left(-3;-1\right)\)
A) Ta có S = 1.2 + 2.3 + 3.4 + ... + 99.100
=> 3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
=> 3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 99.100.(101 - 98)
=> 3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 99.100.101 - 98.99.100
=> 3S = 99.100.101
=> 3S = 999900
=> S = 333300
b) Để A đạt giá trị nhỏ nhất
=> (x - 1)2 nhỏ nhất
mà \(\left(x-1\right)^2\ge0\forall x\)
=> (x - 1)2 = 0 là giá trị nhỏ nhất của (x - 1)2
=> x - 1 = 0
=> x = 1
Vậy khi x = 1 thì A đạt giá trị nhỏ nhất
Để |x + 4| + 1996 đạt giá trị nhỏ nhất
=> |x + 4| nhỏ nhất
mà \(\left|x+4\right|\ge0\forall x\)
=> Giá trị nhỏ nhất của |x + 4| khi |x + 4| = 0
=> x + 4 = 0
=. x = -4
Vậy khi x = -4 thì B đạt GTNN
a ) nhóm 2 số là 1 cặp ta có -1 x 1008 = -1008
b ) !2-6! +7
= ! -4 ! +7
= 4+7
=11