Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi ước chung của 4n + 3 và 5n + 7 là d
Ta có :
+) 4n + 3 ⋮ d => 5( 4n + 3 ) ⋮ d => 20n + 15 ⋮ d (1)
+) 5n + 7 ⋮ d => 4( 5n + 7 ) ⋮ d => 20n + 21 ⋮ d (2)
Lấy (2) trừ (1) ta được :
20n + 21 - 20n - 15
= 6
=> ước chung của 4n + 3 và 5n + 7 là 6 = { 1; 2; 3; -1; -2; -3 }
Dễ thấy 4n + 3 và 5n + 7 đều ko chia hết cho 2 và 3
=> ước chung của 4n + 3 và 5n + 7 là 1
=> d = 1
Vậy ta có 4n + 3 và 5n + 7 là 2 số nguyên tố cùng nhau ( đpcm )
b) tương tự
Ta sẽ tìm số tự nhiên \(n\)để \(A\)không là phân số tối giản.
\(A=\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\) không tối giản khi \(\frac{187}{4n+3}\)không tối giản
\(4n+3\inƯ\left(187\right)=\left\{1,11,17,187\right\}\).
Xét bảng:
4n+3 | 1 | 11 | 17 | 187 |
n | -1/2 (loại) | 2 (tm) | 7/2 (loại) | 46 (tm) |
Vậy \(n\notin\left\{2,46\right\}\)thì \(A\)là phân số tối giản.
\(n^2+4n=n\left(n+4\right)\)
Để n(n+4) là số nguyên tố thì (n+4;n): (4;1);(1;4);(-1;-4);(-4;-1)
Nếu n+4 = 4; n=1 => n =0 hoặc n=1
Nếu n+4=1; n=4 => n=-3 hoặc n=4
Nếu n+4 = -1;n=-4 => n = 3 hoặc n=-4
Nếu n+4= -4; n= -1 => n=-8; n=-1
\(n^2+4n=n\left(n+4\right)\)
Để \(n^2+4n\) là số nguyên tố thì \(\left[{}\begin{matrix}n=1\\n+4=1\end{matrix}\right.\).
Với \(n=1\): \(n^2+4n=5\) (thỏa mãn).
Với \(n+4=1\Leftrightarrow n=-3\) (không thỏa mãn).
a) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\inℕ\)mà \(n\inℕ\)
suy ra \(4n+3\inƯ\left(187\right)\Rightarrow4n+3\in\left\{11;17;187\right\}\)(vì \(4n+3\ge3\))
\(\Rightarrow n\in\left\{2;46\right\}\).
b) \(\frac{8n+193}{4n+3}=\frac{8n+6+187}{4n+3}=2+\frac{187}{4n+3}\)rút gọn được khi \(\frac{187}{4n+3}\)rút gọn được.
Ta có: \(187=11.17\)suy ra \(\orbr{\begin{cases}\left(4n+3\right)⋮11\\\left(4n+3\right)⋮17\end{cases}}\)
- \(4n+3=11k\Leftrightarrow n=\frac{11k-3}{4}\)
\(150< n< 170\Rightarrow150< \frac{11k-3}{4}< 170\Rightarrow55\le k\le62\)
ta có các giá trị của \(n\)thỏa mãn là: \(156,167\).
- \(4n+3=17k\)xét tương tự, thu được các giá trị \(n\)thỏa mãn là: \(165\)
Vậy các giá trị của \(n\)thỏa mãn là: \(156,165,167\).
\(a,\frac{4n+7}{4n+2}=\frac{4n+2}{4n+2}+\frac{5}{4n+2}=1+\frac{5}{4n+2}\)
Để \(\frac{4n+7}{4n+2}\)là stn
Thì \(1+\frac{5}{4n+2}\)là stn
\(\Leftrightarrow\frac{5}{4n+2}\)là stn
<=> 4n + 2 thuộc ước của 5
Mà 4n + 2 chẵn => 4n + 2 = 0
=> \(n=-\frac{1}{2}\)loại vì n là stn
Vậy ko tìm đc n
b, VỚi mọi p là số tự nhiên thì p + 6 và p + 18 đều là stn
Vậy ...
Tk nha!