K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2021

a, \(P+\left(5x^2+9xy\right)=6x^2+9xy-x\)

\(\Rightarrow P=x^2-x\)

Gỉa sử : x = 1 là nghiệm của đa thức 

Thay x = 1 vào P ta được : \(1-1=0\)*đúng*

Vậy x = 1 là nghiệm của đa thức trên 

b, Với \(x\ge\frac{1}{7}\)đa thức có dạng : \(A=2x^2+7x-1-5+x-2x^2=8x-6\)(1) 

Với \(x< \frac{1}{7}\)đa thức có dạng : \(A=2x^2-7x+1-5+x-2x^2=-6x-4\)(2) 

TH1 : Với đa thức (1) ta có : \(8x-6=2\Leftrightarrow x=1\)

TH2 : Với đa thức (2) ta có : \(-6x-4=2\Leftrightarrow x=-1\)

3 tháng 5 2023

a, \(A\left(x\right)+4x^3-x=-5x^2-2x^3+5+3x^2+2x\\ \Leftrightarrow A\left(x\right)=-5x^2-2x^3+5+3x^2+2x-4x^3+x=\left(-2x^3-4x^3\right)+\left(-5x^2+3x^2\right)+\left(2x+x\right)+5\\ =-6x^3-2x^2+3x+5\)

b,  \(B\left(x\right)=A\left(x\right):\left(x-1\right)=\left(-6x^3-2x^2+3x+5\right):\left(x-1\right)=-6x^2-8x-5\)

Thay \(x=-1\) vào \(B\left(x\right)\)

\(\Rightarrow-6.\left(-1\right)^2-8\left(-1\right)-5=-3\ne0\)

\(\Rightarrow x=-1\) không là nghiệm của B(x) 

a: P(x)=-5x^3+6x^2+3x-1

Q(x)=-5x^3+6x^2+4x+2

b: H(x)=-5x^3+6x^2+3x-1-5x^3+6x^2+4x+2

=-10x^3+12x^2+7x+1

T(x)=-5x^3+6x^2+3x-1+5x^3-6x^2-4x-2

=-x-3

c: T(x)=0

=>-x-3=0

=>x=-3

d: G(x)=-(-10x^3+12x^2+7x+1)

=10x^3-12x^2-7x-1

a: P(x)=x^4-2x^4-5x^3-7x^2+2x-1

=-x^4-5x^3-7x^2+2x-1

Q(x)=3x^4-2x^4+5x^3+6x^2-2x+5

=x^4+5x^3+6x^2-2x+5

 

a: P(x)=5x^3+3x^2-2x-5

\(Q\left(x\right)=5x^3+2x^2-2x+4\)

b: P(x)-Q(x)=x^2-9

P(x)+Q(x)=10x^3+5x^2-4x-1

c: P(x)-Q(x)=0

=>x^2-9=0

=>x=3; x=-3

d: C=A*B=-7/2x^6y^4

4 tháng 5 2023

\(Câu8\)

\(a,A=\dfrac{1}{2}x^3\times\dfrac{8}{5}x^2=\left(\dfrac{1}{2}\times\dfrac{8}{5}\right)x^{3+2}=\dfrac{4}{5}x^5\)

b, \(P\left(0\right)=0^2-5.0+6=6\\ P\left(2\right)=2^2-5.2+6=0\)

Câu 9

\(a,A\left(x\right)+B\left(x\right)=5x^3+x^2-3x+5+5x^3+x^2+2x-3\\ =\left(5x^3+5x^3\right)+\left(x^2+x^2\right)+\left(-3x+2x\right)+\left(5-3\right)\\ =10x^3+2x^2-x+2\)

\(b,H\left(x\right)=A\left(x\right)-B\left(x\right)=5x^3+x^2-3x+5-\left(5x^3+x^2+2x-3\right)\\ =5x^3+x^2-3x+5-5x^3-x^2-2x+3\\ =\left(5x^3-5x^3\right)+\left(x^2-x^2\right) +\left(-3x-2x\right)+\left(5+3\right)\\ =-5x+8\)

\(H\left(x\right)=0\\ \Rightarrow-5x+8=0\\ \Rightarrow x=\dfrac{8}{5}\)

vậy nghiệm của đa thức là \(x=\dfrac{8}{5}\)

29 tháng 5 2021

a) A(x) = 5x4 - 5 + 6x3 + x4 - 5x - 12

= (5x4 + x4) + (- 5 - 12) + 6x3 - 5x

= 6x4 - 17 + 6x3 - 5x

= 6x4 + 6x3 - 5x - 17

B(x) = 8x4 + 2x3 - 2x4 + 4x3 - 5x - 15 - 2x2

= (8x4 - 2x4) + (2x3 + 4x3) - 5x - 15 - 2x2

= 4x4 + 6x3 - 5x - 15 - 2x2

= 4x4 + 6x3 - 2x2 - 5x - 15

b) C(x) = A(x) - B(x)

=  6x4 + 6x3 - 5x - 17 - (4x4 + 6x3 - 2x2 - 5x - 15)

= 6x4 + 6x3 - 5x - 17 - 4x4 - 6x3 + 2x2 + 5x + 15

= ( 6x4 - 4x4) + ( 6x3 - 6x3) + (- 5x + 5x) + (-17 + 15) + 2x2

= 2x4 - 2 + 2x2 

= 2x4 + 2x2 - 2

29 tháng 6 2020

\(a.A(x)=5x^4-5+6x^3+x^4-5x-12\)

\(=(5x^4+x^4)+6x^3-5x-5-12\)

\(=6x^4+6x^3-5x-17\)

\(B(x)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)

\(=(8x^4-2x^4)+(2x^3+4x^3)-2x^2-5x\)

\(=6x^4+6x^3-2x^2-5x\)

a, Ta có \(A\left(x\right)=5x^4-5+6x^3+x^4-5x-12\)

\(=6x^4-17+6x^3-5x\)

\(B\left(x\right)=8x^4+2x^3-2x^4+4x^3-5x-2x^2\)

\(=6x^4-5x+6x^3-2x^2\)

Sắp xếp : \(A\left(x\right)=6x^4+6x^3-5x-17\)

\(B\left(x\right)=6x^4+6x^3-2x^2-5x\)

b, Ta có : \(C\left(x\right)=A\left(x\right)+B\left(x\right)\)(thề, đề sai, cho trừ khác ra bn nhé nhưng cx tôn trọng đề vậy =)) 

\(\Leftrightarrow C\left(x\right)=6x^4+6x^3-5x-17+6x^4+6x^3-2x^2-5x\)

\(\Leftrightarrow C\left(x\right)=12x^4+12x^3-10x-17\)

=> vô nghiệm =))