Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+\frac{1}{357}+\frac{1}{525}\)
\(\Rightarrow A=\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+...+\frac{1}{21.25}\)
\(\Rightarrow4A=\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+...+\frac{4}{21.25}\)
\(4A=\frac{1}{1}-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+...+\frac{1}{21}-\frac{1}{25}\)
\(4A=\frac{1}{1}-\frac{1}{25}=\frac{24}{25}\)
\(\Rightarrow A=\frac{24}{25}\div4=\frac{6}{25}
Tổng 100 số hạng đầu tiên của dãy trên là:
\(\frac{1}{5}+\frac{1}{45}+\frac{1}{117}+\frac{1}{221}+...+\frac{1}{159197}\)
=\(\frac{1}{1.5}+\frac{1}{5.9}+\frac{1}{9.13}+\frac{1}{13.17}+...+\frac{1}{397.401}\)
=\(\frac{1}{4}.\left(\frac{4}{1.5}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{397.401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{5}+\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+\frac{1}{13}-\frac{1`}{17}+...+\frac{1}{397}-\frac{1}{401}\right)\)
=\(\frac{1}{4}.\left(1-\frac{1}{401}\right)
Ta thấy mẫu của dãy có dạng 1.5; 5.9; 9.13; 13.17; 17.21;... tổng quát là (4n-3)(4n+1). Mẫu thứ 100 bằng 397.401. Tổng của 100 số hạng đầu của dãy bằng:
\(\left(1-\dfrac{1}{401}\right):4=\dfrac{1}{4}-\dfrac{1}{1604}< \dfrac{1}{4}\)
*HÌNH NHƯ *
vì tổng mẫu số của dãy số luôn luôn bé hơn 4 mà \(\frac{1}{x}>\frac{1}{y}\left(y>x\right)\)nên tổng của 100 số hạng đầu của dãy số nhỏ hơn \(\frac{1}{4}\)