K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 4 2020

a) Áp dụng định lí Py-ta-go vào TG ABC vuông tại A ta có:

BC^2 = AB^2 + AC^2

hay BC^2 = 5^2 + 12^2

.....

suy ra BC = 13cm

b) Ta có: 10^2 = 100

6^2+8^2 = 36 + 64 = 100

suy ra 10^2 = 6^2 + 8^2

hay NP^2=MN^2+MP^2

suy ra TG MNP vuông tại M (theo đlí Py-ta-go đảo)

nhớ tick nhavui

3 tháng 4 2020

THANK Yhehe

3 tháng 4 2020

a.Tam giác ABC vuông tại A \(\Rightarrow AB^2+AC^2=BC^2\)\(\Rightarrow5^2+12^2=BC^2\Rightarrow169=BC^2\Rightarrow BC=13\left(cm\right)\)
b. Tam giác MNP là tam giác vuông vì \(6^2+8^2=10^2\)
Chúc bạn học tốt!

25 tháng 1 2016

Làm ơn giúp mình đi mình đang cần gấp lắm

28 tháng 2 2016

de thoi

1. 55 do

2. bc=10

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cmBài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.a)     Chứng minh: ΔABD = ΔACE. Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D,...
Đọc tiếp

Bài 2: Cho tam giác ABC vuông tại A có AB = 6cm, AC = 8cm.Tính độ dài đoạn BC.

Bài 3: Bộ ba độ dài cho sau có thể là độ dài ba cạnh của một tam giác vuông không? Vì sao?

a) 5cm, 12cm, 9cm                                     b) 12 cm, 16 cm, 20 cm

Bài 4: Cho tam giác ABC cân tại A. Lấy điểm D thuộc cạnh  AC, điểm E thuộc cạnh AB sao cho AD = AE.

a)     Chứng minh: ΔABD = ΔACE.

 

Bài 5: Cho ∆ABC vuông tại A. Tia phân giác của góc B cắt AC tại D, DN⊥BC tại N.

a)     Chứng minh ∆DBA = ∆DBN. So sánh DA và DN.

b)    Gọi M là giao điểm của hai đường thẳng ND và BA. Chứng minh AM = NC

c)     Chứng minh ∆BMC cân.

 

Bài 10: Cho ΔABC vuông tại A, M là trung điểm của BC

a)     Cho biết BC = 10cm, AC = 6cm. Tính độ dài đoạn thẳng AB.

b)    Trên tia đối của tia MA lấy điểm D sao cho MD = MA. Chứng minh rằng ΔMAC = ΔMBD

c)     Chứng minh AB // CD.                                   

d)    Chứng minh:

Bài 11: Cho tam giác ABC có BA < BC và

a)Trên BC lấy điểm M sao cho BM = BA. Chứng minh tam giác ABM đều.

b)Tia phân giác góc B cắt AC tại D. Chứng minh: ΔBAD = ΔBMD.

c)Tia MD cắt tia BA tại H, chứng minh ΔDHC cân.

Bài 12 : Cho tam giác ABC cân tại A, trên cạnh AB và AC lần lượt lấy hai điểm E và D sao cho AD = AE, BD cắt CE tại G. Chứng minh rằng:

a) BD = CE.                                                        

b) Tam giác GDE cân.

c) Gọi M là trung điểm của BC. Chứng minh ba điểm A, G, M thẳng hàng.

d) Cho AB = 8 cm; MB = 5 cm. Tính độ dài AM?

0

Bài 1: 

Áp dụng định lí Pytago vào ΔABC vuông tại B, ta được:

\(AC^2=BC^2+AB^2\)

\(\Leftrightarrow AB^2=AC^2-BC^2=12^2-8^2=80\)

hay \(AB=4\sqrt{5}cm\)

Vậy: \(AB=4\sqrt{5}cm\)

Bài 2: 

Áp dụng định lí Pytago vào ΔMNP vuông tại N, ta được:

\(MP^2=MN^2+NP^2\)

\(\Leftrightarrow MN^2=MP^2-NP^2=\left(\sqrt{30}\right)^2-\left(\sqrt{14}\right)^2=16\)

hay MN=4cm

Vậy: MN=4cm

9 tháng 2 2021

Bài 1 :

- Áp dụng định lý pi ta go ta được :\(BA^2+BC^2=AC^2\)

\(\Leftrightarrow AB^2+8^2=12^2\)

\(\Leftrightarrow AB=4\sqrt{5}\) ( cm )

Vậy ...

Bài 2 :

- Áp dụng định lý pi ta go vào tam giác MNP vuông tại N có :

\(MN^2+NP^2=MP^2\)

\(\Leftrightarrow MN^2+\sqrt{14}^2=\sqrt{30}^2\)

\(\Leftrightarrow MN=4\) ( đvđd )

Vậy ...

 

 

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B làA. 50° B. 60° C. 55° D. 75°Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A làA. 40° C. 15° C. 105° D. 30°Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:A MN^+ NP^= MP^B MP ^+NP^ =MN^C NM= NPD pN^+ MP^= MN^Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC làA. 17 cm B. 13 cm C. 14 cm D. 14,4 cmCâu 5. Cho tam giác...
Đọc tiếp

Câu 1. Cho tam giác ABC cân tại A, có góc A = 70°. Số đo góc B là
A. 50° B. 60° C. 55° D. 75°
Câu 2. Cho tam giác ABC cân tại A, góc B = 75°. Số đo của góc A là
A. 40° C. 15° C. 105° D. 30°
Câu 3. Tam giác MNP vuông tại N. Hệ thức nào sau đây là đúng:

A MN^+ NP^= MP^
B MP ^+NP^ =MN^
C NM= NP
D pN^+ MP^= MN^

Câu 4. Cho tam giác ABC vuông tại A, AB = 5 cm, AC = 12 cm. Độ dài cạnh BC là
A. 17 cm B. 13 cm C. 14 cm D. 14,4 cm
Câu 5. Cho tam giác HIK vuông tại I, IH = 10 cm, HK = 16 cm. Độ dài cạnh IK là
A. 26 cm
B. \(\sqrt{156}cm\)
\(\sqrt{12}cm\)
 D. 156cm

Câu 6. Cho tam giác ABC cân tại A, AH vuông góc với BC tại H, AB = 10cm. BC = 12 cm.
Độ dài AH bằng
A. 6cm. B. 4 cm C. 8cm D. 64 cm
Câu 7. Cho tam giác đều ABC có độ dài cạnh là 6 cm. Kẻ AI vuông góc với BC. Độ dài cạnhAI là
A. \(3\sqrt{3}cm\)
B. 3 cm
C. \(3\sqrt{2}\)
D. 4 cm

Câu 8. Một chiếc tivi có chiều rộng là 30 inch, đường chéo là 50 inch. Chiều dài chiếc tivi đó là
A. 20 inch B. 1600 inch 3400 inch. D. 40 inch
Câu 9. Tam giác vuông là tam giác có độ dài ba cạnh là:
A. 3cm, 4cm,5cm B. 5cm, 7cm, 8cm C. 4cm, 6 cm, 8cm D. 3cm, 5cm, 7cm
Câu 10. Tam giác ABCcân tại A. Biết AH = 3cm, HC = 2 cm. Khi đó độ dài BC bằng

A. 5 cm
B. 4cm
C.\(2\sqrt{5}cm\)
\(2\sqrt{3}cm\)
Giups mik vs mik đg cần gấp

 

0