K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(A=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2+1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^2+1\right]\left[\left(\sqrt{2}\right)^2-1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^4-1\right]\left[\left(\sqrt{2}\right)^4+1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^8-1\right]\left[\left(\sqrt{2}\right)^8+1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^{16}-1\right]\left[\left(\sqrt{2}\right)^{16}+1\right]\)

\(=\left(\sqrt{2}+1\right)\left[\left(\sqrt{2}\right)^{32}-1\right]\)

\(=65535\sqrt{2}+65535\)

b) Ta có: \(\dfrac{1}{1+\sqrt{2}}+\dfrac{1}{\sqrt{2}+\sqrt{3}}+...+\dfrac{1}{\sqrt{2019}+\sqrt{2020}}\)

\(=\sqrt{2}-1+\sqrt{3}-\sqrt{2}+...+\sqrt{2020}-\sqrt{2019}\)

\(=\sqrt{2020}-1\)

\(=2\sqrt{505}-1\)

c) Ta có: \(C^3=26+15\sqrt{3}+26-15\sqrt{3}+3\cdot\sqrt[3]{\left(26+15\sqrt{3}\right)\left(26-15\sqrt{3}\right)}\cdot\left(\sqrt[3]{26+15\sqrt{3}}+\sqrt[3]{26-15\sqrt{3}}\right)\)

\(\Leftrightarrow C^3=52+3\cdot C\)

\(\Leftrightarrow C^3-3\cdot C-52=0\)

\(\Leftrightarrow C^3-4C^2+4C^2-16C+13C-52=0\)

\(\Leftrightarrow C^2\left(C-4\right)+4C\left(C-4\right)+13\left(C-4\right)=0\)

\(\Leftrightarrow\left(C-4\right)\left(C^2+4C+13\right)=0\)

mà \(C^2+4C+13>0\)

nên C-4=0

hay C=4

4 tháng 10 2021

1) \(A=2\sqrt{5}-6\sqrt{2}+3\sqrt{5}=5\sqrt{5}-6\sqrt{2}\)

2) \(B=\dfrac{30\left(\sqrt{7}+1\right)}{7-1}+\dfrac{15\left(\sqrt{7}-2\right)}{7-4}=5\sqrt{7}+5+5\sqrt{7}-10=-5+10\sqrt{7}\)

3) \(C=\left(3-\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}-1}\right)\left(3+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{\sqrt{5}+1}\right)=\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)=9-5=4\)

4) \(D=3-\sqrt{2}+1-\sqrt{2}=4-2\sqrt{2}\)

 

28 tháng 4 2018

a. \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)

= \(\sqrt{3-2\sqrt{15}+5}-\sqrt{3+2\sqrt{15}+5}\)

= \(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)

= \(\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}\)

= \(-2\sqrt{3}\)

b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)

= \(\dfrac{\left(\sqrt{15}-\sqrt{5}\right).\left(\sqrt{3}+1\right)}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(2\sqrt{5}+4\right)}{4}\)

=\(\dfrac{\sqrt{45}+\sqrt{15}-\sqrt{15}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).2\left(\sqrt{5}+2\right)}{4}\)

= \(\dfrac{3\sqrt{5}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(\sqrt{5}+2\right)}{2}\)

= \(\dfrac{2\sqrt{5}}{2}+\dfrac{5\sqrt{5}+10-10-4\sqrt{5}}{2}\)

= \(\sqrt{5}+\dfrac{\sqrt{5}}{2}\)

= \(\dfrac{3\sqrt{5}}{2}\)

c. \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}+\dfrac{1}{\sqrt{5}+\sqrt{2}}\right):\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)

= \(\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}\right)}.\left(\sqrt{2}+1\right)^2\)

= \(\dfrac{2\sqrt{5}}{3}.\left(2+2\sqrt{2}+1\right)\)

= \(\dfrac{2\sqrt{5}}{3}.\left(3+2\sqrt{2}\right)\)

= \(\dfrac{6\sqrt{5}+4\sqrt{10}}{3}\)

d. \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right).\dfrac{1}{\sqrt{3}+5}\)

= \(\left(\sqrt{3}+1-3\left(\sqrt{3}+2\right)+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right).\dfrac{1}{\sqrt{3}+5}\)

= \(\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)

= \(\left(-2\sqrt{3}-5+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)

= \(\dfrac{-4\sqrt{3}-10+15+5\sqrt{3}}{2}.\dfrac{1}{\sqrt{3}+5}\)

= \(\dfrac{\sqrt{3}+5}{2}.\dfrac{1}{\sqrt{3}+5}\)

= \(\dfrac{1}{2}\)

Nếu đúng cho 1 like nhé!

NV
13 tháng 8 2021

\(A=\left(\dfrac{\sqrt{2}\left(\sqrt{2}+1\right)}{\sqrt{2}+1}-\dfrac{\sqrt{5}\left(\sqrt{3}-\sqrt{7}\right)}{\sqrt{3}-\sqrt{7}}\right).\left(\sqrt{2}+\sqrt{5}\right)\)

\(=\left(\sqrt{2}-\sqrt{5}\right)\left(\sqrt{2}+\sqrt{5}\right)=2-5=-3\)

\(B=\dfrac{12\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-\dfrac{2\sqrt{3}.\sqrt{3}}{\sqrt{3}}+\dfrac{3}{\sqrt{2}}-\dfrac{3}{\sqrt{3}}\)

\(=\dfrac{12\left(3-\sqrt{3}\right)}{6}-2\sqrt{3}+\dfrac{3\sqrt{2}}{2}-\sqrt{3}\)

\(=2\left(3-\sqrt{3}\right)-3\sqrt{3}+\dfrac{3\sqrt{2}}{2}=6-5\sqrt{3}+\dfrac{3\sqrt{2}}{2}\) (câu này khả năng đề sai, dấu \(\sqrt{3}.\sqrt{2}\) ở mẫu cuối cùng là dấu trừ mới hợp lý)

\(C=\left(\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}-\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}\right).\left(\dfrac{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\right)\)

\(=\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\dfrac{3}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}=\dfrac{3}{\sqrt{x}\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)^2}\)

Dấu giữa 2 dấu ngoặc là dấu chia sẽ hợp lý hơn

a) Ta có: \(A=\dfrac{3+2\sqrt{3}}{\sqrt{3}}+\dfrac{2+\sqrt{2}}{\sqrt{2}+1}-\left(\sqrt{2}+\sqrt{3}\right)\)

\(=\sqrt{3}+2+\sqrt{2}+1-\sqrt{2}-\sqrt{3}\)

=3

b) Ta có: \(B=\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left[\sqrt{3}+1-3\left(2+\sqrt{3}\right)+\dfrac{15\left(3+\sqrt{3}\right)}{6}\right]\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{5}{2}\left(3+\sqrt{3}\right)\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(-5-2\sqrt{3}+\dfrac{15}{2}+\dfrac{5}{2}\sqrt{3}\right)\cdot\dfrac{1}{5+\sqrt{3}}\)

\(=\left(\dfrac{5}{2}+\dfrac{\sqrt{3}}{2}\right)\cdot\dfrac{1}{5+\sqrt{3}}=\dfrac{1}{2}\)