Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(P\left(x\right)=2x\left(x^3-3x+1\right)-\left(x^3-3x+1\right)+x^2-4\)
Do đó: \(P\left(a\right).P\left(b\right).P\left(c\right)=\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)\)
Ta có:
\(\left(x-a\right)\left(x-b\right)\left(x-c\right)=x^3-3x+1\)
\(\Rightarrow\left\{{}\begin{matrix}a+b+c=0\\ab+ac+bc=-3\\abc=-1\end{matrix}\right.\)
C1: \(\left(a^2-4\right)\left(b^2-4\right)\left(c^2-4\right)=\left(abc\right)^2-4\left(a^2b^2+b^2c^2+c^2a^2\right)+16\left(a^2+b^2+c^2\right)-4^3\)
\(=1-4.9+16.6-4^3=-3\)\(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=-3\)
C2: Biến đổi thêm một chút
Ta có: \(a,b,c\ne0\) nên
\(a^3-3a+1=0\Leftrightarrow a\left(a^2-3\right)+1=0\)\(\Rightarrow a^2-3=\dfrac{-1}{a}\)
Tương tự...
\(\Rightarrow P\left(a\right).P\left(b\right).P\left(c\right)=\left(-\dfrac{1}{a}-1\right)\left(-\dfrac{1}{b}-1\right)\left(-\dfrac{1}{c}-1\right)\)
\(=-\left(\dfrac{1}{a}+1\right)\left(\dfrac{1}{b}+1\right)\left(\dfrac{1}{c}+1\right)\)\(=-\dfrac{a+1}{a}.\dfrac{b+1}{b}.\dfrac{c+1}{c}=abc+ac+bc+ab+a+b+c+1=-1-3+1=-3\)
- Dễ dàng nhận thấy \(x=-1\) không phải là 1 nghiệm của đa thức P(x).
- Gọi b là 1 nghiệm của đa thức \(P\left(x\right)=x^3+3x^2-1\)
Do đó: \(b^3+3b^2-1=0\)
\(\Rightarrow\left(b^3+3b^2+3b+1\right)-3\left(b+1\right)+1=0\)
\(\Rightarrow\left(b+1\right)^3-3\left(b+1\right)+1=0\)
\(\Rightarrow\dfrac{\left(b+1\right)^3-3\left(b+1\right)+1}{\left(b+1\right)^3}=0\)
\(\Rightarrow\left(\dfrac{1}{b+1}\right)^3-3.\left(\dfrac{1}{b+1}\right)^2+1=0\)
\(\Rightarrow\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
Thay \(x=-\dfrac{1}{b+1}\) vào \(P\left(x\right)=x^3+3x^2-1\) ta được:
\(P\left(-\dfrac{1}{b+1}\right)=\left(-\dfrac{1}{b+1}\right)^3+3.\left(-\dfrac{1}{b+1}\right)^2-1=0\)
\(\Rightarrow-\dfrac{1}{b+1}\) là một nghiệm của đa thức P(x).
Đặt \(a=-\dfrac{1}{b+1}\Rightarrow ab+a+1=0\) \(\Rightarrowđpcm\)
a. Thay x = 2 vào vế trái của phương trình (1), ta có:
22 – 5.2 + 6 = 4 – 10 + 6 = 0
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (1).
Thay x = 2 vào vế trái của phương trình (2), ta có:
2 + (2 – 2)(2.2 +1) = 2 + 0 = 2
Vế trái bằng vế phải nên x = 2 là nghiệm của phương trình (2).
Vậy x = 2 là nghiệm chung của hai phương trình (1) và (2).
b. Thay x = 3 vào vế trái của phương trình (1), ta có:
32 – 5.3 + 6 = 9 – 15 + 6 = 0
Vế trái bằng vế phải nên x = 3 là nghiệm của phương trình (1).
Thay x = 3 vào vế trái của phương trình (2), ta có:
3 + (3 – 2)(2.3 + 1) = 3 + 7 = 10 ≠ 2
Vì vế trái khác vế phải nên x = 3 không phải là nghiệm của phương trình (2).
Vậy x = 3 là nghiệm của phương trình (1) nhưng không phải là nghiệm của phương trình (2).
c. Hai phương trình (1) và (2) không tương đương nhau vì x = 3 không phải là nghiệm chung của hai phương trình.
a:
Thay x=2 vào (1), ta được:
\(2^2-5\cdot2+6=0\)(đúng)
Thay x=2 vào (2), ta được:
\(2+\left(2-2\right)\cdot\left(2\cdot2+1\right)=2\)(đúng)
b: (1)=>(x-2)(x-3)=0
=>S1={2;3}
(2)=>\(x+2x^2+x-4x-2-2=0\)
\(\Leftrightarrow x^2+x-2=0\)
=>(x+2)(x-1)=0
=>S2={-2;1}
vậy: x=3 là nghiệm của (1) nhưng không là nghiệm của (2)