Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( 2x - 1 )2 = 9
=> 2x - 1 = 3
=> 2x = 4
=> x = 2
\(\left(1-\frac{1}{15}\right)\left(1-\frac{1}{21}\right)\left(1-\frac{1}{28}\right)...\left(1-\frac{1}{225}\right)\)
\(=\frac{14}{15}.\frac{20}{21}.\frac{27}{28}...\frac{224}{225}\)
\(=\frac{2.7}{3.5}.\frac{5.4}{7.3}.\frac{3.9}{4.7}...\frac{16.14}{15.15}\)
\(=\frac{2}{3}.\frac{14}{15}\) ( rút gọn )
\(=\frac{28}{45}\)
áp dụng công thức \(\frac{n\left(n-1\right)}{2}\)
<=>\(\frac{114\cdot\left(114-1\right)}{2}\)
<=> A =6441
A=1+2-3-4+5+6-7-8+...-111-112+113+114
A=1+(2-3-4+5)+(6-7-8+9)+...+(110-111-112+113)+114
A=1+ 0 +0 +.........+0+114
A=115
\(\left(5+5^2+5^3+...+5^{10}\right)+4x-1=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)
\(\Leftrightarrow\left(1+5+5^2+5^3+...+5^{10}\right)+4x-2=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)(1)
1./ Trước tiên, ta tính:
\(S=1+5+5^2+5^3+...+5^{10}\)
\(\left(5-1\right)\cdot S=\left(5-1\right)\left(1+5+5^2+5^3+...+5^{10}\right)\)
\(\Leftrightarrow4S=5^{11}-5^{10}+5^{10}-5^9+...+5-1=5^{11}-1\)
\(\Leftrightarrow S=\frac{5^{11}-1}{4}=\frac{1}{4}5^{11}-\frac{1}{4}\)
2./ (1) trở thành:
\(\Leftrightarrow\frac{1}{4}5^{11}-\frac{1}{4}+4x-2=\frac{1}{4}5^{11}+\frac{1}{2}x+3\)
\(\Leftrightarrow4x-\frac{1}{2}x=5+\frac{1}{4}\Leftrightarrow\frac{7}{2}x=\frac{21}{4}\)
\(\Leftrightarrow x=\frac{3}{2}\).