Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{99}+2^{100}\right)=\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{99}\left(1+2\right)=\)
\(=3\left(2+2^3+2^5+2^7+...+2^{99}\right)⋮3\)
1. 3A = 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 )
=> 2A = 3^101 - 3 => 2A + 3 = 3^101 vậy n = 101
2. 2A = 8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21
=> 2A - A = (8 + 2 ^ 3 + 2^4 + ... + 2^20 + 2^21) - (4+ 2^2 + 2 ^ 3 + 2^4 + ... + 2^20 )
=> A = 2^21 là một lũy thừa của 2
3.
a) 3A = 3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101
=> 3A - A = (3 + 3^2 + 3^3 + 3^4 + ... + 3^100 + 3^ 101) - (1 + 3 + 3 ^2 + 3 ^ 3 + ... + 3 ^100)
=> 2A = 3^101 - 1 => A = (3^101 - 1)/2
b) 4B = 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101
=> 4B - B = (4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 + 4^ 101) - (1 + 4 + 4 ^ 2 + 4 ^3 + 4 ^ 4 + ... + 4 ^ 100 )
=> 3B = 4^101 - 1 => B = ( 4^101 - 1)/2
c) xem lại đề ý c xem quy luật như thế nào nhé.
d) 3D = 3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151
=> 3D - D = (3^101 + 3^ 102 + 3^ 103 + ... + 36 150 + 3^ 151) - (3 ^100 + 3 ^ 101 + 3 ^ 102 + .... + 3 ^ 150)
=> 2D = 3^ 151 - 3^100 => D = ( 3^ 151 - 3^100)/2
\(A=1+2+2^2+2^3+.....+2^7\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+....+\left(2^6+2^7\right)\)
\(A=3+2^2\left(1+2\right)+....+2^6\left(1+2\right)\)
\(A=3+2^2.3+....+2^6.3\)
\(A=3.\left(2^2+....+2^6\right)⋮3\)
A = 1 + 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7
= ( 1 + 2 ) + ( 2 2 + 2 3 ) + ( 2 4 + 2 5 ) + ( 2 6 + 2 7 )
= ( 1 + 2 ) + 2 2 ( 1 + 2 ) + 2 4 ( 1 + 2 ) + 2 6 ( 1 + 2 )
= 3 + 2 2 . 3 + 2 4 . 3 + 2 6 . 3
= 3 . ( 1 + 2 2 + 2 4 + 2 6 ) chia hết cho 3 ( Do 3 chia hết cho 3 )
Vậy A = 1 + 2 + 2 2 + 2 3 + 2 4 + 2 5 + 2 6 + 2 7 chia hết cho 3
\(S=1+2+2^2+2^3+.....+2^{11}\)
\(2S=2+2^2+2^3+.....+2^{12}\)
\(2S-S=\left(2+2^2+2^3+.....+2^{12}\right)-\left(1+2+2^2+2^3+.....+2^{11}\right)\)
\(S=2+2^2+2^3+.....+2^{12}-1-2-2^2-2^3-.....-2^{11}\)
\(S=2^{12}-1\)
\(A=2+2^2+2^3+...+2^{10}\)
\(=\left(2+2^2\right)+\left(2^3+2^4\right)+...+\left(2^9+2^{10}\right)\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^9\left(1+2\right)\)
\(=3\left(2+2^3+...+2^9\right)⋮3\)
\(A=2+2^2+2^3+...+2^{10}\)
\(=\left(2+2^2+2^3+2^4+2^5\right)+\left(2^6+2^7+2^8+2^9+2^{10}\right)\)
\(=2\left(1+2+2^2+2^3+2^4\right)+2^6\left(1+2+2^2+2^3+2^4\right)\)
\(=\left(2+2^6\right).31⋮31\)
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
rrrrr